The standardization activities of the fifth generation communications are clearly over and deployment has commenced globally. To sustain the competitive edge of wireless networks, industrial and academia synergy have begun to conceptualize the next generation of wireless communication systems (namely, sixth generation, (6G)) aimed at laying the foundation for the stratification of the communication needs of the 2030s. In support of this vision, this study highlights the most promising lines of research from the recent literature in common directions for the 6G project. Its core contribution involves exploring the critical issues and key potential features of 6G communications, including: (i) vision and key features; (ii) challenges and potential solutions; and (iii) research activities. These controversial research topics were profoundly examined in relation to the motivation of their various sub-domains to achieve a precise, concrete, and concise conclusion. Thus, this article will contribute significantly to opening new horizons for future research directions.
Internet of things (IoT) is one of key pillars in fifth generation (5G) and beyond 5G (B5G) networks. It is estimated to have 42 billion IoT devices by the year 2025. Currently, carbon emissions and electronic waste (e-waste) are significant challenges in the information & communication technologies (ICT) sector. The aim of this article is to provide insights on green IoT (GIoT) applications, practices, awareness, and challenges to a generalist of wireless communications. We garner various efficient enablers, architectures, environmental impacts, technologies, energy models, and strategies, so that a reader can find a wider range of GIoT knowledge. In this article, various energy efficient hardware design principles, data-centers, and software based data traffic management techniques are discussed as enablers of GIoTs. Energy models of IoT devices are presented in terms of data communication, actuation process, static power dissipation and generated power by harvesting techniques for optimal power budgeting. In addition, this article presents various effective behavioral change models and strategies to create awareness about energy conservation among users and service providers of IoTs. Fog/Edge computing offers a platform that extends cloud services at the edge of network and hence reduces latency, alleviates power consumption, offers improved mobility, bandwidth, data privacy, and security. Therefore, we present the energy consumption model of a fog-based service under various scenarios. Problems related to ever increasing data in IoT networks can be solved by integrating artificial intelligence (AI) along with machine learning (ML) models in IoT networks. Therefore, this article provides insights on role of the ML in the GIoT. We also present how legislative policies support adoption of recycling process by various stakeholders. In addition, this article is presenting future research goals towards energy efficient hardware design principles and a need of coordination between policy makers, IoT devices manufacturers along with service providers.INDEX TERMS Fifth generation, Internet of Things, green Internet of Things, fog, machine learning.
Massive multiple-input multiple-output (MIMO) is playing a crucial role in the fifth generation (5G) and beyond 5G (B5G) communication systems. Unfortunately, the complexity of massive MIMO systems is tremendously increased when a large number of antennas and radio frequency chains (RF) are utilized. Therefore, a plethora of research efforts has been conducted to find the optimal precoding algorithm with lowest complexity. The main aim of this paper is to provide insights on such precoding algorithms to a generalist of wireless communications. The added value of this paper is that the classification of massive MIMO precoding algorithms is provided with easily distinguishable classes of precoding solutions. This paper covers linear precoding algorithms starting with precoders based on approximate matrix inversion methods such as the truncated polynomial expansion (TPE), the Neumann series approximation (NSA), the Newton iteration (NI), and the Chebyshev iteration (CI) algorithms. The paper also presents the fixed-point iteration-based linear precoding algorithms such as the Gauss-Seidel (GS) algorithm, the successive over relaxation (SOR) algorithm, the conjugate gradient (CG) algorithm, and the Jacobi iteration (JI) algorithm. In addition, the paper reviews the direct matrix decomposition based linear precoding algorithms such as the QR decomposition and Cholesky decomposition (CD). The non-linear precoders are also presented which include the dirty-paper coding (DPC), Tomlinson-Harashima (TH), vector perturbation (VP), and lattice reduction aided (LR) algorithms. Due to the necessity to deal with a high consuming power by the base station (BS) with a large number of antennas in massive MIMO systems, a special subsection is included to describe the characteristics of the peak-to-average power ratio precoding (PAPR) algorithms such as the constant envelope (CE) algorithm, approximate message passing (AMP), and quantized precoding (QP) algorithms. This paper also reviews the machine learning role in precoding techniques. Although many precoding techniques are essentially proposed for a small-scale MIMO, they have been exploited in massive MIMO networks. Therefore, this paper presents the application of small-scale MIMO precoding techniques for massive MIMO. This paper demonstrates the precoding schemes in promising multiple antenna technologies such as the cell-free massive MIMO (CF-M-MIMO), beamspace massive MIMO, and intelligent reflecting surfaces (IRSs). In-depth discussion on the pros and cons, performance-complexity profile, and implementation solidity is provided. This paper also provides a discussion on the channel estimation and energy efficiency. This paper also presents potential future directions in massive MIMO precoding algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.