In the present study, AA 5083-O plates are joined by friction stir welding technique. A universal milling machine was used to perform the welding process of the work-pieces which were fixed on the proper position by a vice. The joints were friction stir welded by two tools with different pin profiles; cylindrical threaded pin and tapered smooth one at different rotational speed values; 400 rpm and 630 rpm, and different welding speed values; 100 mm/min and 160 mm/min. During FSW of each joint, the temperature was measured by infra-red thermal image camera. The welded joints were inspected by visually as well as by the macro-and microstructure evolutions. Furthermore, the joints were tested for measuring the hardness and the tensile strength to study the effect of changing the FSW parameters on the mechanical properties. The results show that increasing the rotational speed results in increasing the peak temperature, while increasing the welding speed results in decreasing the peak temperature for the same tool pin profile. Defect free welds were obtained at lower rotational speed by the threaded tool profile. Moreover, the threaded tool pin profile gives superior mechanical properties at lower rotational speed.
A 3D transient heat transfer model is developed by ABAQUS software to study the temperature distribution during friction stir welding process at different rotational speeds. Furthermore, AA 5083-O plates were joined by FSW technique. For this purpose, a universal milling machine was used to perform the welding process and a mechanical vice was used to fix the work pieces in the proper position. The joints were friction stir welded at a constant travel speed 50 mm/min and two rotational speed values; 400 rpm and 630 rpm using two types of tools; cylindrical threaded pin and tapered smooth one. At each welding condition the temperature was measured using infra-red thermal image camera to verify the simulated temperature distribution. The welded joints were visually inspected as well as by macro-and microstructure evolutions. In addition, the welded joints were mechanically tested for hardness and tensile strength. The maximum peak temperature obtained was at higher rotational speed using the threaded tool pin profile. The results showed that the rotational speed affects the peak temperature, defects formation and sizes, and the mechanical properties of friction stir welded joints. Moreover, the threaded tool gives superior mechanical properties than the tapered one at lower rotational speed.
Friction Stir Welding (FSW) is a solid-state welding technique that uses the heat generated from friction to assemble a wide variety of materials. Irrespective of having a lower heat input as compared to conventional welding techniques, friction stir welds are still prone to significant thermal-induced stresses and distortions owing to the uneven heating and cooling cycles that a weld goes through. Surprisingly, not several reviews have addressed both the residual stresses and distortions of friction stir welds despite their crucial impact on the weld performance. Therefore, the current paper reviews their development, their correlation with process parameters, and ways to reduce them. Moreover, it explains the current status of process modeling and research gaps in the area of interest.
In the present research, a coupled Eulerian–Lagrangian model is developed to predict the forces and defects produced from AA6063 friction stir welding process. Furthermore, the obtained results from the developed model were validated experimentally by performing the welding process at different rotational and welding speed values. The results revealed an appearance of tunnel defect at all welded joints with surface flash. The current model successfully predicted both defects’ evolution. Additionally, it also generated force measurements comparable to those obtained experimentally. In addition, the developed Coupled Eulerian–Lagrangian model successfully predicted the generated force and the defects during friction stir welding process with maximum error of 14% and 18%. However, it failed in predicting the tunnel positions. In terms of the tensile strength, the largest tensile strength value was at 1250rpm and 50 mm/min, whereas the lowest one was at 1000 rpm and 25 mm/min. Moreover, the fracture locations were at the advancing side of all the welded joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.