Recently, new continuous distributions have been proposed to apply in statistical analysis. In this paper, the Generalized Odd Gamma-G distribution is introduced. In particular, G has been considered as the Uniform distribution and some statistical properties such as quantile function, asymptotics, moments, entropy and order statistics have been calculated.The fitness capability of this model has been investigated by fitting this model and others based on real data sets. The parameters of this model are estimated by the maximum likelihood estimation method with simulated real data in order to test validity of maximum likelihood estimators .
Parameter estimation in multivariate analysis is important, particularly when parameter space is restricted. Among different methods, the shrinkage estimation is of interest. In this article we consider the problem of estimating the p-dimensional mean vector in spherically symmetric models. A dominant class of Baranchik-type shrinkage estimators is developed that outperforms the natural estimator under the balance loss function, when the mean vector is restricted to lie in a non-negative hyperplane. In our study, the components of the diagonal covariance matrix are assumed to be unknown. The performance evaluation of the proposed class of estimators is checked through a simulation study along with a real data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.