Selective serotonin reuptake inhibitors are the most commonly prescribed antidepressants worldwide, which have been reported to exert potential detrimental effects on bone mineral density and increase the risk of developing fractures. The present study aimed to investigate the pathways underlying the negative effects of fluoxetine on bone using mesenchymal stem cells (MSCs) derived from rat adipose tissue as a source of osteoprogenitor cells. MSCs were harvested from adipose tissue using a collagenase enzyme digestion method and were allowed to differentiate into osteoprogenitor cells. Various concentrations of fluoxetine were added to the cells, which were harvested and analyzed by flow cytometry to detect apoptotic markers Annexin V and caspase-3, in order to assess the levels of apoptosis. The levels of endogenous serotonin released in the extracellular matrix were measured using a serotonin ELISA kit. The underlying molecular pathways associated with the effects of fluoxetine on bone were investigated with reverse transcription-quantitative polymerase chain reaction. The results of the present study revealed a significant dose-dependent increase in apoptosis in response to increasing doses of fluoxetine, which was independent of serotonin levels in the culture supernatant. These findings indicated that fluoxetine exerted a direct inhibitory effect on bone cells via an apoptosis-dependent pathway. Furthermore, the expression levels of serotonergic genes, including serotonin 1B receptor, serotonin 2A receptor (HTR2A), serotonin 2B receptor and serotonin transporter, were down regulated; of these genes, HTR2A exhibited the highest expression levels. Further in vitro and in vivo studies are required to verify this association and to determine the molecular pathways involved in fluoxetine-induced bone loss. Fluoxetine-induced apoptosis of osteoprogenitor cells may be the mechanism underlying the increased incidence of bone loss observed in patients treated with fluoxetine.
Tauopathy is a pathological hallmark of many neurodegenerative diseases. It is characterized by abnormal aggregates of pathological phosphotau and somatodendritic redistribution. One suggested strategy for treating tauopathy is to stimulate autophagy, hence, getting rid of these pathological protein aggregates. One key controller of autophagy is mTOR. Since stimulation of mTOR leads to inhibition of autophagy, inhibitors of mTOR will cause stimulation of autophagy process. In this report, tauopathy was induced in mice using annonacin. Blocking of mTOR was achieved through stereotaxic injection of siRNA against mTOR. The behavioral and immunohistochemical evaluation revealed the development of tauopathy model as proven by deterioration of behavioral performance in open field test and significant tau aggregates in annonacin-treated mice. Blocking of mTOR revealed significant clearance of tau aggregates in the injected side; however, tau expression was not affected by mTOR blockage.
Tauopathy comprises a group of disorders caused by abnormal aggregates of tau protein. In these disorders phosphorylated tau protein tends to accumulate inside neuronal cells (soma) instead of the normal axonal distribution of tau. A suggested therapeutic strategy for tauopathy is to induce autophagy to increase the ability to get rid of the unwanted tau aggregates. One of the key controllers of autophagy is mTOR. Blocking mTOR leads to stimulation of autophagy. Recently, unravelling molecular structure of mTOR showed that it is formed of two subunits: mTORC1/C2. So, blocking both subunits of mTOR seems more attractive as it will explore all abilities of mTOR molecule. In the present study, we report using pp242 which is a dual mTORC1/C2 blocker in cellular model of tauopathy using LUHMES cell line. Adding fenazaquin to LUHMES cells induced tauopathy in the form of increased phospho tau aggregates. Moreover, fenazaquin treated cells showed the characteristic somatic redistribution of tau. PP242 use in the present tauopathy model reversed the pathology significantly without observable cellular toxicity for the used dosage of 1000 nM. The present study suggests the possible use of pp242 as a dual mTOR blocker to treat tauopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.