Functional and motility-related gastrointestinal (GI) disorders affect nearly 40% percent of the population. Disturbances of GI myoelectric activity have been proposed to play a significant role in these disorders. A significant barrier to usage of these signals in diagnosis and treatment is the lack of consistent relationships between GI myoelectric features and function. A potential cause of this issue is the use of arbitrary classification criteria, such as percentage of power in tachygastric and bradygastric frequency bands. Here we applied automatic feature extraction using a deep neural network architecture on GI myoelectric signals from free-moving ferrets. For each animal, we recorded during baseline control and feeding conditions lasting for 1 h. Data were trained on a 1-dimensional residual convolutional network, followed by a fully connected layer, with a decision based on a sigmoidal output. For this 2-class problem, accuracy was 90%, sensitivity (feeding detection) was 90%, and specificity (baseline detection) was 89%. By comparison, approaches using hand-crafted features (e.g., SVM, random forest, and logistic regression) produced an accuracy from 54% to 82%, sensitivity from 46% to 84% and specificity from 66% to 80%. These results suggest that automatic feature extraction and deep neural networks could be useful to assess GI function for comparing baseline to an active functional GI state, such as feeding. In future testing, the current approach could be applied to determine normal and disease-related GI myoelectric patterns to diagnosis and assess patients with GI disease.
Background:
Human immunodeficiency virus (HIV) screening has improved significantly in the past decade as we have implemented tests that include antigen detection of p24. Incorporation of p24 detection narrows the window from 4 to 2 weeks between infection acquisition and ability to detect infection, reducing unintentional spread of HIV. The fourth- and fifth-generation HIV (HIV5G) screening tests in low prevalence populations have high numbers of false-positive screens and it is unclear if orthogonal testing improves diagnostic and public health outcomes.
Methods:
We used a cohort of 60,587 HIV5G screening tests with molecular and clinical correlates collected from 2016 to 2018 and applied machine learning to generate a classifier that could predict likely true and false positivity.
Results:
The best classification was achieved by using support vector machines and transformation of results with principle component analysis. The final classifier had an accuracy of 94% for correct classification of false-positive screens and an accuracy of 92% for classification of true-positive screens.
Conclusions:
Implementation of this classifier as a screening method for all HIV5G reactive screens allows for improved workflow with likely true positives reported immediately to reduce infection spread and initiate follow-up testing and treatment and likely false positives undergoing orthogonal testing utilizing the same specimen already drawn to reduce distress and follow-up visits. Application of machine learning to the clinical laboratory allows for workflow improvement and decision support to provide improved patient care and public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.