Breast cancer is the most common type of cancer, and it is the reason for cancer death toll in women in recent years. Early diagnosis is essential to handle breast cancer patients for treatment at the right time. Screening with mammography is the preferred examination for breast cancer, as it is available worldwide and inexpensive. Computer-Aided Detection (CAD) systems are used to analyze medical images to detect breast cancer, early. The death rate of cancer patients has decreased by detecting tumors early and having appropriate treatment after operations. Processing of mammogram images has four main steps: pre-processing, segmentation of the region of interest, feature extraction and classification of the images into normal or abnormal classes. This paper presents an efficient framework for processing of mammogram images and introduces an algorithm for segmentation of the images to detect masses. The pre-processing step of mammogram images includes removal of digitization noise using a 2D median filter, removal of artifacts using morphological operations, and contrast enhancement using a fuzzy enhancement technique. The proposed fuzzy image enhancement technique is analyzed and compared with conventional techniques based on an Enhancement Measure (EME) and local contrast metrics. The comparison shows an outstanding performance of the proposed technique from the visual and numerical perspectives. The segmentation process is performed using Otsu's multiple thresholding method. This method segments the image regions into five classes with variable intensities using four thresholds. Its effectiveness is measured based on visual quality of the segmentation output, as it gives details about the image and positions of masses. The performance of the proposed framework is measured using Dice coefficient, Hausdorff, and Peak Signal-to-Noise Ratio (PSNR) metrics. The segmented tumor region with the proposed segmentation method is 81% of the ground truth region provided
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.