The mechanisms leading to the electrification of water when it comes in contact with hydrophobic surfaces remains a research frontier in chemical science. A clear understanding of these mechanisms could, for instance, aid the rational design of triboelectric generators and micro- and nano-fluidic devices. Here, we investigate the origins of the excess positive charges incurred on water droplets that are dispensed from capillaries made of polypropylene, perfluorodecyltrichlorosilane-coated glass, and polytetrafluoroethylene. Results demonstrate that the magnitude and sign of electrical charges vary depending on: the hydrophobicity/hydrophilicity of the capillary; the presence/absence of a water reservoir inside the capillary; the chemical and physical properties of aqueous solutions such as pH, ionic strength, dielectric constant and dissolved CO2 content; and environmental conditions such as relative humidity. Based on these results, we deduce that common hydrophobic materials possess surface-bound negative charge. Thus, when these surfaces are submerged in water, hydrated cations form an electrical double layer. Furthermore, we demonstrate that the primary role of hydrophobicity is to facilitate water-substrate separation without leaving a significant amount of liquid behind. These results advance the fundamental understanding of water-hydrophobe interfaces and should translate into superior materials and technologies for energy transduction, electrowetting, and separation processes, among others.
International audienceWe present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles (~10) at high temperatures (up to 623 K) using in-situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by µ0HC = 2(KMC + Kshape)/MS with KMC the magnetocrystalline anisotropy constant, Kshape the shape anisotropy constant and MS the saturation magnetization. HC decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300 - 500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation
The reactivity of highly crystalline hcp cobalt nanorods (NRs) with organic solvents at high temperature was studied. Cobalt NRs with a mean diameter of 15 nm were first synthesized by the polyol process and then heated at 300 °C in octadecene (ODE), oleylamine (OA) or mixtures of these two solvents. The surface and structural modifications of the Co NRs were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning and transmission electron microscopy (SEM and TEM). A disordered carbon shell was formed at the cobalt rod surface, the thickness of which can be tuned from 5 to 25 nm by increasing the amount of oleylamine in the solvent mixture. This carbon shell partially reduced the native cobalt oxide observed at the surface of the NRs and drastically improved their temperature stability as inferred from in-situ XRD study and TEM. The shape anisotropy and the crystallite anisotropy of the hcp phase are both preserved up to 400 °C for the carbon coated cobalt rods whereas the uncoated NRs lose their anisotropy at 225 °C. Treatments at 300 °C in ODE/OA mixtures for different durations allowed the progressive carburization of Co to Co 2 C. The crystallographic orientation of the Co 2 C grains within the cobalt NRs combined with the different carbon shell thickness on the {1010} and (0001) facets of the rods suggested a preferential carburization from the lateral facets of the hcp cobalt rods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.