The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application
Existence and controllability results for nonlinear Hilfer fractional differential equations are studied. Sufficient conditions for existence and approximate controllability for Sobolev-type impulsive fractional differential equations are established, where the time fractional derivative is the Hilfer derivative. An example for Sobolev-type Hilfer fractional delay partial differential equation with impulsive condition is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.