COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan (Hubei province, China) during late 2019. It has spread across the globe affecting nearly 21 million people with a toll of 0.75 million deaths and restricting the movement of most of the world population during the past 6 months. COVID-19 became the leading health, economic, and humanitarian challenge of the twenty-first century. In addition to the considerable COVID-19 cases, hospitalizations, and deaths in humans, several cases of SARS-CoV-2 infections in animal hosts (dog, cat, tiger, lion, and mink) have been reported. Thus, the concern of pet owners is increasing. Moreover, the dynamics of the disease requires further explanation, mainly concerning the transmission of the virus from humans to animals and vice versa. Therefore, this study aimed to gather information about the reported cases of COVID-19 transmission in animals through a literary review of works published in scientific journals and perform genomic and phylogenetic analyses of SARS-CoV-2 isolated from animal hosts. Although many instances of transmission of the SARS-CoV-2 have been reported, caution and further studies are necessary to avoid the occurrence of maltreatment in animals, and to achieve a better understanding of the dynamics of the disease in the environment, humans, and animals. Future research in the animal–human interface can help formulate and implement preventive measures to combat the further transmission of COVID-19.
Lumpy skin disease (LSD) is an endemic infectious disease of cattle in Egypt. This survey aimed to define the prevalence of clinical and sub-clinical LSD virus (LSDV) infection among cattle and investigate their contact with water buffaloes (Bubalus bubalis) in order to improve the understanding of LSD epidemiology. Cattle and buffalo were examined owing to the appearance of skin lesions. Because clinical signs were consistent with LSDV infection, samples from cattle in a non-grazing dairy farm (n = 450) were submitted for LSDV testing together with those from the in-contact buffaloes (n = 100). Results revealed that the intra-herd percentage of cattle infected with LSDV varied with the detection method. This ranged from 22.4% to 65.4% by virus isolation (VI) and polymerase chain reaction (PCR), respectively, in clinical cattle samples, compared to 0% and 10% by VI and PCR in non-clinical cases. Using the neutralising index (NI), LSDV antibodies were found in 100% (n = 100) of the tested cow’s sera (NI = > 2.0 and ≥ 3.0), whereas buffalo’s sera (n = 34) displayed little increase in antibody level (NI ≥ 1.5). None of the buffalo were positive for LSDV by VI and PCR. In addition, there were no significant differences in LSD prevalence among the cattle with regard to age and sex. In conclusion, the occurrence of LSD in cattle warrants a further epidemiological study of the spread of the disease in the area and adoption of control and prevention strategies. In addition, the PCR assay was confirmed to be useful in the diagnosis of LSDV and for wider epidemiological studies.
Calf diarrhea is one of the considerable infectious diseases in calves, which results in tremendous economic losses globally. To determine the prevalence of Shiga-toxigenic E. coli (STEC) and Enterotoxigenic E. coli (ETEC) incriminated in calf diarrhea, with special reference to Shiga- toxins genes (stx1 and stx2) and enterotoxins genes (lt and sta) that govern their pathogenesis, as well as the virulence genes; eaeA (intimin) and f41(fimbrial adhesion), and the screening of their antibiogram and antimicrobial resistance genes; aadB, sul1, and bla-TEM, a total of 274 fecal samples were collected (April 2018–Feb 2019) from diarrheic calves at different farms in El-Sharqia Governorate, Egypt. The bacteriological examination revealed that the prevalence of E. coli in diarrheic calves was 28.8%. The serotyping of the isolated E. coli revealed 7 serogroups; O26, O128, O111, O125, O45, O119 and O91. Furthermore, the Congo red binding test was carried out, where 89.8% of the examined strains (n = 71) were positive. The antibiogram of the isolated strains was investigated; the majority of E. coli serotypes exhibit multidrug resistance (MDR) to four antimicrobial agents; neomycin, gentamycin, streptomycin, and amikacin. Polymerase chain reaction (PCR) was used to detect the prevalence of the virulence genes; stx1, stx2 lt, sta, f41 and eaeA, as well as the antimicrobial resistance genes; aadB, sul1, and bla-TEM. The prevalence of STEC was 20.2% (n = 16), while the prevalence of ETEC was 30.4% (n = 24). Briefly, the Shiga toxins genes; stx1 and stx2, are the most prevalent virulence genes associated with STEC, which are responsible for the pathogenesis of the disease and helped by the intimin gene (eaeA). In addition, the lt gene is the most prevalent enterotoxin gene accompanied by the ETEC strains, either alone or in combination with sta and/or f41 genes. The majority of pathogenic E. coli incriminated in calf diarrhea possesses the aadB resistance gene, followed by the sul1 gene. Enrofloxacin, florfenicol, amoxicillin-clavulanic acid, and ampicillin-sulbactam, are the most effective antimicrobial agents against the isolated STEC and ETEC strains.
The purpose of this study was to investigate the prevalence, antibiotic resistance and certain virulence genes of the most predominant bacterial pathogens causing BRD. A total of 225 calves; 55 apparently healthy and 170 diseased; were sampled. Bacteriological examination, antimicrobial susceptibility testing and PCR based detection of some virulence genes were performed. In addition, the serotyping of E. coli was performed using the slide agglutination test. The most predominant bacterial pathogens retrieved from apparently healthy calves were E. coli (16.4%) and S. aureus (10.9%), and in pneumonic calves were E. coli (23.5%), P. vulgaris (12.4%) and S. aureus (11.8%). The most prevalent virulence gene in E. coli was the fimH gene (100%), followed by eaeA gene (24.5%) and hly gene (20.4%). All the examined S. aureus strains harbored spa and coa genes; likewise, all P. multocida strains harbored toxA gene. The majority of the isolated strains displayed remarkable sensitivity to norfloxacin and enrofloxacin; furthermore, the retrieved E. coli strains exhibited multidrug-resistance to gentamicin, erythromycin, streptomycin and trimethoprim-sulphamethoxazole, in addition, the isolated S. aureus and P. aeruginosa strains showed multidrug-resistance to amoxicillin, ampicillin and tetracycline. E. coli serogroups including O18, O143, O1, and O6 were retrieved from pneumonic calves as the first report in Egypt. In conclusion, the synergism between the conventional and genotypic analysis is an effective gadget for the characterization of bacterial pathogens causing BRD. Continuous surveillance of antimicrobial susceptibility is essential to select the drug of choice due to the development of multidrug-resistant strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.