In this paper, we first study a new two parameter lifetime distribution. This distribution includes “monotone” and “non-monotone” hazard rate functions which are useful in lifetime data analysis and reliability. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Renyi entropy, δ-entropy, order statistics and probability weighted moments are derived. Non-Bayesian estimation methods such as the maximum likelihood, Cramer-Von-Mises, percentile estimation, and L-moments are used for estimating the model parameters. The importance and flexibility of the new distribution are illustrated by means of two applications to real data sets. Using the approach of the Bagdonavicius–Nikulin goodness-of-fit test for the right censored validation, we then propose and apply a modified chi-square goodness-of-fit test for the Burr X Weibull model. The modified goodness-of-fit statistics test is applied for the right censored real data set. Based on the censored maximum likelihood estimators on initial data, the modified goodness-of-fit test recovers the loss in information while the grouped data follows the chi-square distribution. The elements of the modified criteria tests are derived. A real data application is for validation under the uncensored scheme.
We present a new two parameter Burr XII distribution. The new density can be right skewed with no peak, unimodal-right skewed, left skewed and symmetric. The new failure rate can be decreasing, unimodal and increasing. Properties related to the new model are derived. Simple type copula-based construction is presented for deriving some new bivariate and multivariate type distributions. The maximum likelihood estimation, Anderson Darling estimation, right tail Anderson Darling estimation and left tail Anderson Darling estimation methods are used to estimate the model parameters. A new data set is analyzed for comparing estimations methods and the competitive models.
After defining a new log-logistic model and studying its properties, some new bivariate type versions using “Farlie-Gumbel-Morgenstern Copula”, “modified Farlie-Gumbel-Morgenstern Copula”, “Clayton Copula”, and “Renyi’s entropy Copula” are derived. Then, using the Bagdonavicius-Nikulin goodness-of-fit (BN-GOF) test for validation, we proposed a goodness-of-fit test for a new log-logistic model. The modified test is applied for the “right censored” real dataset of survival times. All elements of the modified test are explicitly derived and given. Three real data applications are presented for measuring the flexibility and the importance of the new model under the uncensored scheme. Two other real datasets are analyzed for censored validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.