The reconfigurable intelligent surface (RIS) technology has attracted interest due to its promising coverage and spectral efficiency features. However, some challenges need to be addressed to realize this technology in practice. One of the main challenges is the configuration of reflecting coefficients without the need for beam training overhead or massive channel estimation. Earlier works used estimated channel information with deep learning algorithms to design RIS reflection matrices. Although these works can reduce the beam training overhead, still they overlook existing correlations in the previously sampled channels. In this paper, different from existing works, we propose to exploit the correlation in the previously sampled channels to estimate RIS interaction more reliably. We use a deep multilayer perceptron for this purpose. Simulation results reveal performance improvements achieved by the proposed algorithm.
Cognitive radio is an intelligent and adaptive radio that improves the utilization of the spectrum by its opportunistic sharing. However, it is inherently vulnerable to primary user emulation and jamming attacks that degrade the spectrum utilization. In this paper, an algorithm for the detection of primary user emulation and jamming attacks in cognitive radio is proposed. The proposed algorithm is based on the sparse coding of the compressed received signal over a channel-dependent dictionary. More specifically, the convergence patterns in sparse coding according to such a dictionary are used to distinguish between a spectrum hole, a legitimate primary user, and an emulator or a jammer. The process of decision-making is carried out as a machine learning-based classification operation. Extensive numerical experiments show the effectiveness of the proposed algorithm in detecting the aforementioned attacks with high success rates. This is validated in terms of the confusion matrix quality metric. Besides, the proposed algorithm is shown to be superior to energy detection-based machine learning techniques in terms of receiver operating characteristics curves and the areas under these curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.