Non-linear loads connected to an electric power system produce Harmonic currents, harmonics are introduced into the system in the form of currents whose frequencies are the integral multiples of the fundamental power system frequency (50/60 Hz). The harmonic currents interact with the supply system impedance causing distortions in supply output voltage and current, which has a very bad effect on all other loads connected to the system and the power supply itself, such as overheating, increasing powers losses in the system, and malfunction of protection and control devices connected to the system. This paper presents a study to analyze the effect of voltage and current harmonics resulting from non-linear loads such as variable frequency drive, uninterruptable power supply, and battery chargers on operation and power rating of synchronous generator. The study introduces an optimized method for selecting the suitable generator power rating to withstand harmful harmonics effects for a safe operation of the generator, saving its lifetime, and to improve the power quality of the power system. The method depends on analyzing the effect of increasing the supply generator power rating on the THVD produced from non-linear loads harmonics connected to the system. By calculating the THVD for each case of a generator power rating, a mathematical relationship between generator power rating and TVHD can be found. So, the relationship between generator power rating and total harmonic distortion in the power system will be discussed clearly.
This paper is concerned with an imperative operational problem, called the optimal power flow (OPF), which has several technical and economic points of view with respect the environmental concerns. This paper proposes a multiple-objective optimizer NSWOA (non-dominated sorting whale optimization algorithm) for resolving single-objective OPFs, as well as multi-objective frameworks. With a variety of technical and economic power system objectives, the OPF can be formulated. These objectives are treated as single- and multi-objective OPF issues that are deployed with the aid of the proposed NSWOA to solve these OPF formulations. The proposed algorithm modifies the Pareto ranking and analyzes the optimum compromise solution based on the optimal Euclidian distances. This proposed strategy ensures high convergence speed and improves search capabilities. To achieve this study, an IEEE 30-bus (sixth-generation unit system) is investigated, with eight scenarios studied that highlight technical and environmental operational needs. When compared to previous optimization approaches, the suggested NSWOA achieves considerable techno-economic improvements. Additionally, the statical analyses are carried out for 20 separate runs. This analysis proves the high robustness of the proposed NSWOA at low levels of standard deviation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.