Summary Generation of induced pluripotent stem cells (iPSCs) is a process whose mechanistic underpinnings are only beginning to emerge. Here, we applied in-depth quantitative proteomics to monitor proteome changes during the course of reprogramming of fibroblasts to iPSCs. We uncover a 2-step resetting of the proteome during the first and last three days of reprogramming, with multiple functionally related proteins changing in expression in a highly coordinated fashion. This comprised several biological processes with a previously unknown role in reprogramming, including changes in the stoichiometry of electron transport-chain complexes, repressed vesicle-mediated transport during the intermediate stage and an EMT-like process in the late phase. In addition, we demonstrate that the nucleoporin Nup210 is essential for reprogramming by permitting rapid cellular proliferation and subsequent progression through MET. Along with the identification of proteins expressed in a stage-specific manner, this study provides a rich resource towards an enhanced mechanistic understanding of cellular reprogramming.
SummaryMaintenance of pluripotency is regulated by a network of transcription factors coordinated by Oct4, Sox2, and Nanog (OSN), yet a systematic investigation of the composition and dynamics of the OSN protein network specifically on chromatin is still missing. Here we have developed a method combining ChIP with selective isolation of chromatin-associated proteins (SICAP) followed by mass spectrometry to identify chromatin-bound partners of a protein of interest. ChIP-SICAP in mouse embryonic stem cells (ESCs) identified over 400 proteins associating with OSN, including several whose interaction depends on the pluripotent state. Trim24, a previously unrecognized protein in the network, converges with OSN on multiple enhancers and suppresses the expression of developmental genes while activating cell cycle genes. Consistently, Trim24 significantly improved efficiency of cellular reprogramming, demonstrating its direct functionality in establishing pluripotency. Collectively, ChIP-SICAP provides a powerful tool to decode chromatin protein composition, further enhanced by its integrative capacity to perform ChIP-seq.
Long noncoding RNAs (lncRNAs) have emerged as new regulators of stem cell pluripotency and tumorigenesis. The SOX2 gene, a master regulator of pluripotency, is embedded within the third intron of a lncRNA known as SOX2 overlapping transcript (SOX2OT). SOX2OT has been suspected to participate in regulation of SOX2 expression and/or other related processes; nevertheless, its potential involvement in tumor initiation and/or progression is unclear. Here, we have evaluated a possible correlation between expression patterns of SOX2OT and those of master regulators of pluripotency, SOX2 and OCT4, in esophageal squamous cell carcinoma (ESCC) tissue samples. We have also examined its potential function in the human embryonic carcinoma stem cell line, NTERA2 (NT2), which highly expresses SOX2OT, SOX2, and OCT4. Our data revealed a significant coupregulation of SOX2OT along with SOX2 and OCT4 in tumor samples, compared to the non-tumor tissues obtained from the margin of same tumors. We also identified two novel splice variants of SOX2OT (SOX2OT-S1 and SOX2OT-S2) which coupregulated with SOX2 and OCT4 in ESCCs. Suppressing SOX2OT variants caused a profound alteration in cell cycle distribution, including a 5.9 and 6.9 time increase in sub-G1 phase of cell cycle for SOX2OT-S1 and SOX2OT-S2, respectively. The expression of all variants was significantly diminished, upon the induction of neural differentiation in NT2 cells, suggesting their potential functional links to the undifferentiated state of the cells. Our data suggest a part for SOX2OT spliced variants in tumor initiation and/or progression as well as regulating pluripotent state of stem cells. STEM CELLS 2014;32:126-134
Deregulation of the EVI1 proto-oncogene by the GATA2 distal hematopoietic enhancer (G2DHE) is a key event in high-risk acute myeloid leukemia carrying 3q21q26 aberrations (3q-AML). Upon chromosomal rearrangement, G2DHE acquires characteristics of a super-enhancer and causes overexpression of EVI1 at 3q26.2. However, the transcription factor (TF) complex of G2DHE remains poorly characterized. The aim of this study was to unravel key components of G2DHE-bound TFs involved in the deregulation of EVI1. We have identified several CEBPA and RUNX1 binding sites to be enriched and critical for G2DHE function in 3q-AML cells. Using ChIP-SICAP (ChIP followed by selective isolation of chromatin-associated proteins), a panel of chromatin interactors of RUNX1 and CEBPA were detected in 3q-AML, including PARP1 and IKZF1. PARP1 inhibition (PARPi) caused a reduction of EVI1 expression and a decrease in EVI1–G2DHE interaction frequency, highlighting the involvement of PARP1 in oncogenic super-enhancer formation. Furthermore, 3q-AML cells were highly sensitive to PARPi and displayed morphological changes with higher rates of differentiation and apoptosis as well as depletion of CD34 + cells. In summary, integrative analysis of the 3q-AML super-enhancer complex identified CEBPA and RUNX1 associated proteins and nominated PARP1 as a potential new therapeutic target in EVI1 + 3q-AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.