Glioma patients whose tumors carry a mutation in Isocitrate Dehydrogenase 1 (IDH1R132H) are younger at diagnosis and live longer. IDH1 mutations co-occur with other molecular lesions, such as 1p/19q co-deletion, inactivating mutations in the tumor suppressor protein 53 (TP53) gene, and loss of function mutations in alpha thalassemia/mental retardation syndrome X-linked gene (ATRX). All adult low-grade gliomas (LGGs) harboring ATRX loss also express the IDH1R132H mutation. The current molecular classification of LGGs is based, in part, on the distribution of these mutations. We modelled the molecular glioma subtype which harbors IDH1R132H, and TP53 and ATRX inactivating mutations. Previously, we established that ATRX deficiency, in the context of wt-IDH1, induces genomic instability, impairs non homologous end joining DNA repair, and increases sensitivity to DNA damaging therapies. In this study, we investigated the function of IDH1R132H in the context of TP53 and ATRX loss. We discovered that IDH1R132H expression in the genetic context of ATRX and TP53 gene inactivation: (i) increases median survival (MS) in the absence of any treatment, (ii) enhances DNA damage response (DDR) via epigenetic upregulation of the Ataxia-telangiectasia mutated (ATM) signaling pathway, and (iii) elicits tumor radioresistance. Accordingly, pharmacological inhibition of ATM or checkpoint kinase 1 and 2 (CHK1/2), essential kinases in the DDR, restored the tumors’ radiosensitivity. Translation of these findings to IDH1132H glioma patients harboring TP53 and ATRX loss, could significantly improve the therapeutic efficacy of radiotherapy, and consequently patient survival.
There is a large unmet need for effective therapeutic approaches for glioma, the most malignant brain tumor. Clinical and preclinical studies have enormously expanded our knowledge about the molecular aspects of this deadly disease and its interaction with the host immune system. In this review we highlight the wide array of immunotherapeutic interventions that are currently being tested in glioma patients. Given the molecular heterogeneity, tumor immunoediting and the profound immunosuppression that characterize glioma, it has become clear that combinatorial approaches targeting multiple pathways tailored to the genetic signature of the tumor will be required in order to achieve optimal therapeutic efficacy.
Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection.
Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood−brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4 + monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∼60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.