Mitochondria exhibit suppressed ATP production, membrane potential (∆Ψ) polarization and reactive oxygen species (ROS) bursts during some cellular metabolic transitions. Although mitochondrial ROS release is influenced by ∆Ψ and respiratory state, the relationship between these properties remains controversial primarily because they have not been measured simultaneously. We developed a multiparametric method for probing mitochondrial function that allowed precise characterization of the temporal relationship between ROS, ∆Ψ and respiration. We uncovered a previously unknown spontaneous ROS spike - termed mitochondrial transition ROS spike (mTRS) - associated with re-polarization of ∆Ψ that occurs at the transition between mitochondrial energy states. Pharmacological inhibition of complex CI (CI), nicotinamide nucleotide transhydrogenase (NNT) and antioxidant system significantly decreased the ability of mitochondria to exhibit mTRS. NADH levels followed a similar trend to that of ROS during the mTRS, providing a link between CI and NNT in mTRS regulation. We show that (i) mTRS is enhanced by simultaneous activation of CI and complex II (CII); (ii) CI is the principal origin of mTRS; (iii) NNT regulates mTRS via NADH- and ∆Ψ-dependent mechanisms; (iv) mTRS is not a pH spike; and (v), mTRS changes in amplitude under stress conditions and its occurrence can be a signature of mitochondrial health. Collectively, we uncovered and characterized the biophysical properties and mechanisms of mTRS, and propose it as a potential diagnostic tool for CI-related dysfunctions, and as a biomarker of mitochondrial functional integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.