A Permanent Wood Foundation (PWF) is a panel composed of expanded polystyrene insulation and preserved stud cores laminated between oriented-strand boards and preserved plywood. This thesis presents the experimental testing on selected PWFs' sizes to investigate their long-term creep behaviour under sustained soil pressure. The long-term creep tests were performed over eight months, followed by loading the tested panels to destruction to determine their axial compressive strength. The ultimate load test results showed that the structural qualification of PWF is "as good as" the structural capacity of the conventional wood-frame buildings. The obtained experimental ultimate compressive resistance and flexural resistance, along with the developed long-term creep deflection of the wall under lateral soil pressure can be used in the available Canadian Wood Council (CWC) force-moment interaction equation to establish design tables of such wall panels under gravity loading and soil pressure.
This research investigates the use of glass fiber reinforced polymer (GFRP) bars in bridge decks and ultra-high performance fibre-reinforced concrete (UHPFRC) as filling materials in (i) panelto- panel closure strips between transverse precast full-depth deck panels (FDDPs) supported over girders and (ii) the shear pockets for the panel-to-girder connection. The experimental research program included three phases. Phase I examined pullout strength of straight-end and headed-end GFRP bars embedded into UHPFRC to determine the required closure strip width to develop bar full strength. Phase II included the development and study of closure strip details incorporating UHPFRC as joint-filling materials and GFRP bars projecting into the joint. Three joints of width 200 mm between precast FDDPs were developed, namely: angle-shape joint (Ajoint), C-shape joint (C-shape), and zigzag-shape joint (Z-joint), with 175-mm projecting length of GFRP bars into the joint. Two series of 2500x600x200 mm one-way slabs were cast to investigate the flexural strength of the jointed precast slabs compared to cast-in-place slabs. Two types of concrete were used to fabricate the precast FDDPs, namely: normal concrete (NSC) and high-performance concrete (HPC). Correlation between experimental results and available design equations for moment and shear capacities, as well as CHBDC and AASHTO-LR applied factored design moments, was performed. All specimens failed in either flexural or flexural-shear mode outside the UHPFRC-filled joint. Phase III included testing three pairs of 3700x2500x200 mm laterally-restrained precast FDDPs incorporating the three developed joint details in the transverse direction of the girders. Each pair of specimens was tested under 600x250 mm wheel loading located beside the closure strip, considering (i) constant amplitude fatigue (CAF) loading up to 4 million cycles followed by increasing static loading to-collapse, and (ii) incremental variable amplitude fatigue (VAF) loading to-collapse. The failure mode of the tested slabs was punching shear, with the transverse UHPFRC joint diverting the extension of the punching shear plane to the adjacent precast FDDP segment. Results of fatigue load tests on the three-jointed pairs of slabs showed high fatigue performance. A new prediction model for fatigue life of the GFRP-reinforced, UHPFRC-filled jointed deck slabs was developed.
A Permanent Wood Foundation (PWF) is a panel composed of expanded polystyrene insulation and preserved stud cores laminated between oriented-strand boards and preserved plywood. This thesis presents the experimental testing on selected PWFs' sizes to investigate their long-term creep behaviour under sustained soil pressure. The long-term creep tests were performed over eight months, followed by loading the tested panels to destruction to determine their axial compressive strength. The ultimate load test results showed that the structural qualification of PWF is "as good as" the structural capacity of the conventional wood-frame buildings. The obtained experimental ultimate compressive resistance and flexural resistance, along with the developed long-term creep deflection of the wall under lateral soil pressure can be used in the available Canadian Wood Council (CWC) force-moment interaction equation to establish design tables of such wall panels under gravity loading and soil pressure.
Vibration analysis of plates with openings represents an important issue in civil, aerospace, and mechanical engineering applications. It has been familiar that the opening or cut-out may be considered as a defect in most cases, which generally leads to a decrease in the stiffness of the member, according to the opening’s size, shape as well as location. Hence, it affects the dynamic properties, for instance, the natural frequencies and the mode shapes. In this work, numerical modal analysis of fixed ends supported RC concrete slabs with three different aspect ratios as well as two different central square and circular openings has been investigated. The study is based on evaluating the natural frequency of these cases, as a global parameter. A simulation process for the modal analysis using ANSYS software is done to compare the results. The natural frequencies of RC concrete slab with openings have been evaluated and compared with each other as well as with the intact slab, as control ones. The results showed that both two shapes of central openings have an impact on the natural frequencies of the slab depending on sizes and aspect ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.