A study of wireless technologies for IoT applications in terms of power consumption has been presented in this paper. The study focuses on the importance of using low power wireless techniques and modules in IoT applications by introducing a comparative between different low power wireless communication techniques such as ZigBee, Low Power Wi-Fi, 6LowPAN, LPWA and their modules to conserve power and longing the life for the IoT network sensors. The approach of the study is in term of protocol used and the particular module that achieve that protocol. The candidate protocols are classified according to the range of connectivity between sensor nodes. For short ranges connectivity the candidate protocols are ZigBee, 6LoWPAN and low power Wi-Fi. For long connectivity the candidate is LoRaWAN protocol. The results of the study demonstrate that the choice of module for each protocol plays a vital role in battery life due to the difference of power consumption for each module/protocol. So, the evaluation of protocols with each other depends on the module used.
With the fast growth of technologies like cloud computing, big data, the Internet of Things, artificial intelligence, and cyber-physical systems, the demand for data security and privacy in communication networks is growing by the day. Patient and doctor connect securely through the Internet utilizing the Internet of medical devices in cloud-healthcare infrastructure (CHI). In addition, the doctor offers to patients online treatment. Unfortunately, hackers are gaining access to data at an alarming pace. In 2019, 41.4 million times, healthcare systems were compromised by attackers. In this context, we provide a secure and lightweight authentication scheme (RAPCHI) for CHI employing Internet of medical Things (IoMT) during pandemic based on cryptographic primitives. The suggested framework is more secure than existing frameworks and is resistant to a wide range of security threats. The paper also explains the random oracle model (ROM) and uses two alternative approaches to validate the formal security analysis of RAPCHI. Further, the paper shows that RAPCHI is safe against man-in-the-middle and reply attacks using the simulation programme AVISPA. In addition, the paper compares RAPCHI to related frameworks and discovers that it is relatively light in terms of computation and communication. These findings demonstrate that the proposed paradigm is suitable for use in real-world scenarios.
In today’s healthcare environment, the Internet of Things technology provides suitability among physicians and patients, as it is valuable in numerous medicinal fields. Wireless body sensor network technologies are essential technologies in the growth of Internet of Things healthcare paradigm, where every patient is monitored utilising small-powered and lightweight sensor nodes. A dual-hop, inter–wireless body sensor network cooperation and an incremental inter–wireless body sensor network cooperation with energy harvesting in the Internet of Things health-based paradigm have been investigated and designed in this work. The three protocols have been named and abbreviated as follows: energy harvesting–based dual-hop cooperation, energy harvesting–based inter–wireless body sensor network cooperation and energy harvesting–based incremental inter–wireless body sensor network cooperation. Outage probabilities for the three designed protocols were investigated and inspected, and mathematical expressions of the outage probabilities were derived. The simulation and numerical results showed that the energy harvesting–based incremental inter–wireless body sensor network cooperation provided superior performance over the energy harvesting–based inter–wireless body sensor network cooperation and energy harvesting–based dual-hop cooperation by 1.38 times and 5.72 times, respectively; while energy harvesting–based inter–wireless body sensor network cooperation achieved better performance over energy harvesting–based dual-hop cooperation by 1.87 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.