In recent years, a massive amount of genomic DNA sequences are being created which leads to the development of new storing and archiving methods. There is a major challenge to process, store or transmit the huge volume of DNA sequences data. To lessen the number of bits needed to store and transmit data, data compression (DC) techniques are proposed. Recently, DC becomes more popular, and large number of techniques is proposed with applications in several domains. In this paper, a lossless compression technique named Arithmetic coding is employed to compress DNA sequences. In order to validate the performance of the proposed model, the artificial genome dataset is used and the results are investigated interms of different evaluation parameters. Experiments were performed on artificial datasets and the compression performance of Arithmetic coding is compared to Huffman coding, LZW coding, and LZMA techniques. From simulation results, it is clear that the Arithmetic coding achieves significantly better compression with a compression ratio of 0.261 at the bit rate of 2.16 bpc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.