SummaryBackgroundThe Xpert MTB/RIF assay is an automated molecular test that has improved the detection of tuberculosis and rifampicin resistance, but its sensitivity is inadequate in patients with paucibacillary disease or HIV. Xpert MTB/RIF Ultra (Xpert Ultra) was developed to overcome this limitation. We compared the diagnostic performance of Xpert Ultra with that of Xpert for detection of tuberculosis and rifampicin resistance.MethodsIn this prospective, multicentre, diagnostic accuracy study, we recruited adults with pulmonary tuberculosis symptoms presenting at primary health-care centres and hospitals in eight countries (South Africa, Uganda, Kenya, India, China, Georgia, Belarus, and Brazil). Participants were allocated to the case detection group if no drugs had been taken for tuberculosis in the past 6 months or to the multidrug-resistance risk group if drugs for tuberculosis had been taken in the past 6 months, but drug resistance was suspected. Demographic information, medical history, chest imaging results, and HIV test results were recorded at enrolment, and each participant gave at least three sputum specimen on 2 separate days. Xpert and Xpert Ultra diagnostic performance in the same sputum specimen was compared with culture tests and drug susceptibility testing as reference standards. The primary objectives were to estimate and compare the sensitivity of Xpert Ultra test with that of Xpert for detection of smear-negative tuberculosis and rifampicin resistance and to estimate and compare Xpert Ultra and Xpert specificities for detection of rifampicin resistance. Study participants in the case detection group were included in all analyses, whereas participants in the multidrug-resistance risk group were only included in analyses of rifampicin-resistance detection.FindingsBetween Feb 18, and Dec 24, 2016, we enrolled 2368 participants for sputum sampling. 248 participants were excluded from the analysis, and 1753 participants were distributed to the case detection group (n=1439) and the multidrug-resistance risk group (n=314). Sensitivities of Xpert Ultra and Xpert were 63% and 46%, respectively, for the 137 participants with smear-negative and culture-positive sputum (difference of 17%, 95% CI 10 to 24); 90% and 77%, respectively, for the 115 HIV-positive participants with culture-positive sputum (13%, 6·4 to 21); and 88% and 83%, respectively, across all 462 participants with culture-positive sputum (5·4%, 3·3 to 8·0). Specificities of Xpert Ultra and Xpert for case detection were 96% and 98% (−2·7%, −3·9 to −1·7) overall, and 93% and 98% for patients with a history of tuberculosis. Xpert Ultra and Xpert performed similarly in detecting rifampicin resistance.InterpretationFor tuberculosis case detection, sensitivity of Xpert Ultra was superior to that of Xpert in patients with paucibacillary disease and in patients with HIV. However, this increase in sensitivity came at the expense of a decrease in specificity.FundingGovernment of Netherlands, Government of Australia, Bill & Melinda Gates Foundati...
BackgroundThe objectives of the study were to compare the performance of line probe assay (GenoType MTBDRplus) with solid culture method for an early diagnosis of multidrug resistant tuberculosis (MDR-TB), and to study the mutation patterns associated with rpoB, katG and inhA genes at a tertiary care centre in north India.MethodsIn this cross-sectional study, 269 previously treated sputum-smear acid-fast bacilli (AFB) positive MDR-TB suspects were enrolled from January to September 2012 at the All India Institute of Medical Sciences hospital, New Delhi. Line probe assay (LPA) was performed directly on the sputum specimens and the results were compared with that of conventional drug susceptibility testing (DST) on solid media [Lowenstein Jensen (LJ) method].ResultsDST results by LPA and LJ methods were compared in 242 MDR-TB suspects. The LPA detected rifampicin (RIF) resistance in 70 of 71 cases, isoniazid (INH) resistance in 86 of 93 cases, and MDR-TB in 66 of 68 cases as compared to the conventional method. Overall (rifampicin, isoniazid and MDR-TB) concordance of the LPA with the conventional DST was 96%. Sensitivity and specificity were 98% and 99% respectively for detection of RIF resistance; 92% and 99% respectively for detection of INH resistance; 97% and 100% respectively for detection of MDR-TB. Frequencies of katG gene, inhA gene and combined katG and inhA gene mutations conferring all INH resistance were 72/87 (83%), 10/87 (11%) and 5/87 (6%) respectively. The turnaround time of the LPA test was 48 hours.ConclusionThe LPA test provides an early diagnosis of monoresistance to isoniazid and rifampicin and is highly sensitive and specific for an early diagnosis of MDR-TB. Based on these findings, it is concluded that the LPA test can be useful in early diagnosis of drug resistant TB in high TB burden countries.
Accurate and rapid diagnostic tests are critical for achieving control of coronavirus disease 2019 (covid-19), a pandemic illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnostic tests for covid-19 fall into two main categories: molecular tests that detect viral RNA, and serological tests that detect anti-SARS-CoV-2 immunoglobulins. Reverse transcriptase polymerase chain reaction (RT-PCR), a molecular test, has become the gold standard for diagnosis of covid-19; however, this test has many limitations that include potential false negative results, changes in diagnostic accuracy over the disease course, and precarious availability of test materials. Serological tests have generated substantial interest as an alternative or complement to RT-PCR and other Nucleic acid tests in the diagnosis of acute infection, as some might be cheaper and easier to implement at the point of care. A clear advantage of these tests over RT-PCR is that they can identify individuals previously infected by SARS-CoV-2, even if they never underwent testing while acutely ill. Many serological tests for covid-19 have become available in a short period, including some marketed for use as rapid, point-of-care tests. The pace of development has, however, exceeded that of rigorous evaluation, and important uncertainty about test accuracy remains.
The universal sample processing (USP) multipurpose methodology was developed for the diagnosis of tuberculosis (TB) and other mycobacterial diseases by using smear microscopy, culture, and PCR (S. Chakravorty and J. S. Tyagi, J. Clin. Microbiol. 43:2697-2702, 2005). Its performance was evaluated in a blinded study of 571 sputa and compared with that of the direct and N-acetyl L-cysteine (NALC)-NaOH methods of smear microscopy and culture. With culture used as the gold standard, USP smear microscopy demonstrated a sensitivity and specificity of 98.2% and 91.4%, respectively, compared to 68.6% and 92.6%, respectively, for the direct method. For a subset of 325 specimens, the USP method recorded a 97.1% sensitivity and 83.2% specificity compared to the NALC-NaOH method, which had a sensitivity and specificity of 80.0% and 89.7%, respectively, with culture used as the gold standard. Thus, the USP method exhibited a highly significant enhancement in sensitivity (P < 0.0001) compared to the direct and NALC-NaOH methods of smear microscopy. The USP culture sensitivity was 50.1% and was not significantly different from that of conventional methods (53.6%). The sensitivity and specificity of IS6110 PCR were 99.1% and 71.2%, respectively, with culture used as the gold standard, and increased to 99.7% and 78.8%, respectively, when compared with USP smear microscopy. Thus, the USP methodology was highly efficacious in diagnosing TB by smear microscopy, culture, and PCR in a clinical setting.The identification of infectious cases is a crucial first step for tuberculosis (TB) control programs worldwide. It relies exclusively on the detection of acid-fast bacilli (AFB) in sputum by smear microscopy, which continues to be the mainstay of diagnostic laboratories since its introduction in the late nineteenth century. It is estimated that Ͻ20% of approximately 8 million predicted annual cases of TB worldwide are identified as smear positive (15). The targets of a 70% case detection rate and 85% treatment success (22) are not likely to be achieved with the existing methods of smear microscopy. Therefore, there is an urgent and definite need to improve the sensitivity of smear microscopy. In different laboratory settings, the sensitivity of the direct smear method has ranged from 40 to 85% (10, 14, 21; this study), and this method often requires an examination of two or three specimens from the same patient. The inclusion of a concentration step enhanced the sensitivity of the direct smear method, from 54 to 57% to 63 to 80% (5, 9). The N-acetyl L-cysteine (NALC)-NaOH concentration method has shown an improved sensitivity of ϳ66 to 83% (8, 16). However, a conflicting report suggests that the overall diagnostic sensitivity of smear microscopy did not increase with sputum liquefaction and concentration (21). New methods of smear microscopy, such as those using household bleach (NaOCl) (10), carboxypropylbetaine (20), chitin (8), and phenol ammonium sulfate (17), have shown sensitivities ranging from 70 to 80%. We have recently describ...
BackgroundIndia with a major burden of multidrug-resistant tuberculosis (MDR-TB) does not have national level data on this hazardous disease. Since 2006, emergence of extensively drug-resistant TB (XDR-TB) is considered a serious threat to global TB control. This study highlights the demographic and clinical risk factors associated with XDR-TB in Delhi.MethodsThe study was conducted during April 2007 to May 2010. Six hundred eleven MDR-TB suspects were enrolled from four tertiary care hospitals, treating TB patients in Delhi and the demographic details recorded. Sputum samples were cultured using rapid, automated liquid culture system (MGIT 960). Drug susceptibility testing (DST) for Rifampicin (RIF) and Isoniazid (INH) was performed for all positive M. tuberculosis (M.tb) cultures. All MDR-TB isolates were tested for sensitivity to second-line drugs [Amikacin (AMK), Capreomycin (CAP), Ofloxacin (OFX), Ethionamide (ETA)].Results/FindingsOf 611, 483 patients were infected with MDR M. tuberculosis (M.tb) strains. Eighteen MDR-TB isolates (3.7%) were XDR M.tb strains. Family history of TB (p 0.045), socioeconomic status (p 0.013), concomitant illness (p 0.001) and previous intake of 2nd line injectable drugs (p 0.001) were significantly associated with occurrence of XDR-TB. Only two of the patients enrolled were HIV seropositive, but had a negative culture for M. tuberculosis. 56/483 isolates were pre-XDR M. tuberculosis, though the occurrence of pre-XDR-TB did not show any significant demographical associations.ConclusionsThe actual incidence and prevalence rate of XDR-TB in India is not available, although some scattered data is available. This study raises a concern about existence of XDR-TB in India, though small, signaling a need to strengthen the TB control program for early diagnosis of both tuberculosis and drug resistance in order to break the chains of transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.