The aim of this research is to design a PID Controller using PSO algorithm. The model of a DC motor is used as a plant in this paper. The conventional gain tuning of PID controller (such as Ziegler-Nichols (ZN) method) usually produces a big overshoot, and therefore modern heuristics approach such as genetic algorithm (GA) and particle swarm optimization (PSO) are employed to enhance the capability of traditional techniques. However, due to the computational efficiency, only PSO will be used in this paper. The comparison between PSO-based PID (PSO-PID) performance and the ZN-PID is presented. The results show the advantage of the PID tuning using PSO-based optimization approach.
Anti-swing control is a well-known term in gantry crane control. It is designed to move the payload of gantry crane as fast as possible while the payload swing angle should be kept as small as possible at the final position. A number of studies have proposed anti-swing control using the well-known proportional, integral, derivative (PID) control method. However, PID controllers cannot always effectively control systems with changing parameters. Some studies have also proposed intelligent-based control including fuzzy control. However, the designers often have to face the problem of tuning many parameters during the design to obtain optimum performance. Thus, a lot of effort has to be taken in the design stage. In this paper Fuzzy-tuned PID controller design for anti-swing gantry crane control is presented. The objective is to design a practical anti-swing control which is simple in the design and also robust. The proposed Fuzzy-tuned PID utilizes fuzzy system as PID gain tuners to achieve robust performance to parameters’ variations in the gantry crane. A complex dynamic analysis of the system is not needed. PID controller is firstly optimized in MATLAB using a rough model dynamic of the system which is identified by conducting a simple open-loop experiment. Then, the PID gains are used to guide the range of the fuzzy outputs of the Fuzzy-tuned PID controllers. The experimental results show that the proposed anti-swing controller has satisfactory performance. In addition, the proposed method is straightforward in the design.
This paper discusses fuzzy-tuned PID controller design for anti-swing gantry crane control. The objective is employing simple structure of PID control by utilizing fuzzy system as gain tuners to improve its robustness to cope with parameters variations in the crane system. The proposed fuzzy-tuned PID system has simple structure. Instead of fixed PID gains, the gains are determined by means of a fuzzy inference system. Weighting factors are also added to fuzzy output. The simulation result shows that the proposed Fuzzy-tuned PID controllers has similar performance with PID controllers with advantage of robustness to parameters variations for anti-swing gantry crane control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.