In this paper, the starting materials necessary for producing magnesium oxychloride cement (MOC) were produced from dolomite ore using leaching-carbonation-evaporation-pyrohydrolysis processes. The influences of the molar ratio of MgO/MgCl 2 (M x) and H 2 O/MgCl 2 (H y) on the properties of the MOC (cured for 7 days) were determined using physico-mechanical methods. SEM and XRD analyses were conducted to determine the change of phase and microstructure of the selected 7-day MOC depending on the production conduction. The experimental results show that the best mix proportion of 7-day MOC was found to be M 6.06 H 14 and its thermal conductivity, flexural strength, and compressive strength values were found to be 1.202 W/mK, 4.22 MPa, and 87.7 MPa, respectively. The water resistance of the MOC was improved by a small amount of H 3 PO 4 (4% of MgO by weight). Consequently, if MOC is produced from dolomite, high-purity synthetic aragonite and CO 2 would be obtained as byproducts, which are strongly demanded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.