In this study, a novel approach combining fuzzy clustering and Least Squares Support Vector machine (LS-SVM) methods is developed for estimation of failure rate in water distribution networks and for determination of the relationship between failure rateeffective factors. For this aim, failure data observed Malatya water distribution network during 2006-2012 was selected as study area. In first phase, estimation model was developed and tested for the complete data set in estimating the failure rate by LS-SVM method. Then, in order to develop a more sensitive estimation model and to improve the performance of LS-SVM, 9 sub-regions were defined with similar characteristics by using fuzzy clustering method. Then failure rate estimation was carried out for each of the sub-regions using by LS-SVM method. Feed Forward Neural Network (FFNN) and Generalized Regression Neural Network (GRNN) methods were also used for estimation of failure rate and the results were compared with those of LS-SVM. The criteria such as Correlation Coefficient (R), Efficieny (E) and Root Mean Square Error (RMSE) were used to evaluate the performance of models. The results showed that LS-SVM model gives better results in comparison with the FFNN and GRNN models. It was also determined that LSSVM model results for the sub-regions defined by clustering analysis are better and that the clustering analysis increases the estimation model performance in addition to the fact that the estimation results have become better. In conclusion, it can be possible to develop a more sensitive estimation models using fuzzy clustering and LSSVM methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.