Summary This study investigates the integration of thermoelectric generators (TEGs) into geothermal power plants to harvest energy from the waste heat and possibly, as a result, to increase the electrical energy generation of geothermal power plants. For this purpose, a model of a geothermal power plant‐TEG hybrid system has been designed and implemented as an experimental setup. In addition, the optimized layout configuration of TEGs is obtained by using Matlab & Simulink for 48 pieces of the TEGs. A parametric energy analysis is conducted by varying the temperature of the reinjected geothermal brine and the inlet temperature of the cooling water, since TEGs are planned, so they can be employed between the pipelines of the cooling water and the reinjected geothermal brine. The effects that this has on the performance of the organic Rankine cycle (ORC) and the TEGs are then determined. It was found that the power output of the TEGs increases with the rise in temperature of the reinjected geothermal brine, but the net power of the ORC decreases. For the maximum net power output of the ORC, which is 217.6 kW, TEGs are able to produce 43.42 W for the temperature difference of 41.98°C that corresponds to this status. Therefore, TEGs must be used with lower power outputs to achieve more energy production from this hybrid energy system. For the high inlet temperature values of cooling water, the net power of the ORC decreases, and the power output of the TEGs also goes down. TEGs are able to produce 84.29 W for the temperature difference of 60.6°C for the ORC's maximum net power output of 260 kW. Therefore, it is clear that using TEGs in the power plant for low inlet temperature values of cooling water can be considered. In conclusion, this study demonstrates that waste thermal energy in reinjected geothermal brine can be harvested through TEGs, and this energy could be used to feed the electrical equipment of the power plant with low energy consumptions such as lighting, sensors, instrumentation, and control systems. However, TEGs should be used carefully, since they may affect the overall performance of the geothermal power plant.
Geothermal power plants are the plants that provide the conversion of thermal energy in geothermal fluid to electrical energy as a result of the extraction of underground hot water resources to the earth by drilling. The total installed power of geothermal power plants in the field of geothermal resources in Turkey has reached 1,336 MW. The geothermal fluid, which is used for electric power generation in geothermal power plants, is re-injected into the underground wells after electrical energy production. For efficient generation of electrical energy in geothermal power plants, it is aimed to reuse the waste heat energy within the geothermal fluid before it is sent to the re-injection well. To achieve this aim, thermoelectric generator modules which convert waste heat energy to electrical energy can be used. In this study, a thermoelectric generator-based geothermal power plant simulator that converts geothermal fluid waste heat into electrical energy is installed and commissioned in the laboratory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.