Municipal solid waste disposal is a major environmental concern throughout the world. Proper landfill siting involves many environmental, economic, technical, and sociocultural challenges. In this study, a new quantitative method for landfill siting that reduces the number of evaluation criteria, simplifies siting procedures, and enhances the utility of available land evaluation maps was proposed. The method is demonstrated by selecting a suitable landfill site near the city of Marvdasht in Iran. The approach involves two separate stages. First, necessary criteria for preliminary landfill siting using four constraints and eight factors were obtained from a land classification map initially prepared for irrigation purposes. Thereafter, the criteria were standardized using a rating approach and then weighted to obtain a suitability map for landfill siting, with ratings in a 0-1 domain and divided into five suitability classes. Results were almost identical to those obtained with a more traditional environmental landfill siting approach. Because of far fewer evaluation criteria, the proposed weighting method was much easier to implement while producing a more convincing database for landfill siting. The classification map also considered land productivity. In the second stage, the six best alternative sites were evaluated for final landfill siting using four additional criteria. Sensitivity analyses were furthermore conducted to assess the stability of the obtained ranking. Results indicate that the method provides a precise siting procedure that should convince all pertinent stakeholders.
Several cities across the world are located in mountainous and landslide prone areas. Any landfill siting without considering landslide susceptibility in such regions may impose additional environmental adversity. This study was aimed to propose a practical method for selecting waste disposal site that accounts for landslide exposure. The proposed method was applied to a city which is highly proneness to landslide due to its geology, morphology, and climatic conditions. First, information on the previously occurred landslides of the region was collected. Based on this information, proper landslide causative factors were selected and their thematic maps were prepared. Factors' classes were then standardized in 0-1 domain, and thematic layers were weighted by using analytical hierarchy process (AHP). The landslide susceptibility map was prepared afterwards. Unsuitable areas for landfill location were masked in GIS environment by Boolean method, retaining sufficient areas for further evaluation. Nine remaining alternatives were selected through comprehensive field visits and were ranked by using AHP. Consequently, 17 factors in three environmental, economical, and social perspectives were employed. Sensitivity analyses were performed to assess the stability of the alternatives ranking with respect to variations in criterion weights. Based on the obtained landslide susceptible map, nearly 36 % of the entire region is proneness to landslide. The prepared Boolean map indicates that potential areas for landfill construction cover 11 % of the whole region. The results further indicated that if landslide susceptible areas are not considered in landfill site selection, the potential landfill sites would become more than twice. It can be concluded that if any of these landslide prone sites are selected for landfilling, further environmental disaster would be terminated in the future. It can be further concluded that the proposed method could reasonably well be adjusted to consider landslide exposure when siting a solid waste landfill.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.