SUMMARY
Pancreatic islet endocrine cell and endothelial cell (EC) interactions mediated by vascular endothelial growth factor-A (VEGF-A) signaling are important for islet differentiation and the formation of highly vascularized islets. To dissect how VEGF-A signaling modulates intra-islet vasculature, islet microenvironment, and β cell mass, we transiently increased VEGF-A production by β cells. VEGF-A induction dramatically increased the number of intra-islet ECs but led to β cell loss. After withdrawal of the VEGF-A stimulus, β cell mass, function, and islet structure normalized as a result of a robust, but transient, burst in proliferation of pre-existing β cells. Bone marrow-derived macrophages (MΦs) recruited to the site of β cell injury were crucial for the β cell proliferation, which was independent of pancreatic location and circulating factors such as glucose. Identification of the signals responsible for the proliferation of adult, terminally differentiated β cells will improve strategies aimed at β cell regeneration and expansion.
Aims/hypothesis
The S20G human islet amyloid polypeptide (hIAPP) substitution is associated with an earlier onset of type 2 diabetes in humans. Studies of synthetic S20G hIAPP in cell-free systems and immortalised beta cells have suggested that this may be due to increased hIAPP amyloidogenicity and cytotoxicity. Thus, using primary islets from mice with endogenous S20G hIAPP expression, we sought to determine whether the S20G gene mutation leads to increased amyloid-induced toxicity, beta cell loss and reduced beta cell function.
Methods
Islets from mice in which mouse Iapp was replaced with human wild-type or S20G hIAPP were isolated and cultured in vitro under amyloid-forming conditions. Levels of insulin and hIAPP mRNA and protein, amyloid deposition and beta cell apoptosis and area, as well as glucose-stimulated insulin and hIAPP secretion, were quantified.
Results
Islets expressing S20G hIAPP cultured in 16.7 mmol/l glucose demonstrated increased amyloid deposition and beta cell apoptosis, reduced beta cell area, decreased insulin content and diminished glucose-stimulated insulin secretion, compared with islets expressing wild-type hIAPP. Amyloid deposition and beta cell apoptosis were also increased when S20G islets were cultured in 11.1 mmol/l glucose (the concentration that is thought to be physiological for mouse islets).
Conclusions/interpretation
S20G hIAPP reduces beta cell number and function, thereby possibly explaining the earlier onset of type 2 diabetes in individuals carrying this gene mutation.
Islet amyloid is present in more than 90% of individuals with type 2 diabetes, where it contributes to β-cell apoptosis and insufficient insulin secretion. Apoptosis repressor with caspase recruitment domain (ARC) binds and inactivates components of the intrinsic and extrinsic apoptosis pathways and was recently found to be expressed in islet β-cells. Using a human islet amyloid polypeptide transgenic mouse model of islet amyloidosis, we show ARC knockdown increases amyloid-induced β-cell apoptosis and loss, while ARC overexpression decreases amyloid-induced apoptosis, thus preserving β-cells. These effects occurred in the absence of changes in islet amyloid deposition, indicating ARC acts downstream of amyloid formation. Because islet amyloid increases c-Jun N-terminal kinase (JNK) pathway activation, we investigated whether ARC affects JNK signaling in amyloid-forming islets. We found ARC knockdown enhances JNK pathway activation, whereas ARC overexpression reduces JNK, c-Jun phosphorylation, and c-Jun target gene expression (Jun and Tnf). Immunoprecipitation of ARC from mouse islet lysates showed ARC binds JNK, suggesting interaction between JNK and ARC decreases amyloid-induced JNK phosphorylation and downstream signaling. These data indicate that ARC overexpression diminishes amyloid-induced JNK pathway activation and apoptosis in the β-cell, a strategy that may reduce β-cell loss in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.