The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up.
To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000 rpm for 1 min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics.
A rapid and accurate diagnosis of the species and antibiotic resistance of bacteria in septic blood is vital to increase survival rates of patients with bloodstream infections, particularly those with carbapenem-resistant enterobacteriaceae (CRE) infections. The extremely low levels in blood (1 to 100 CFU/ml) make rapid diagnosis difficult. In this study, very low concentrations of bacteria (6 to 200 CFU/ml) were separated from 7 ml of whole blood using rapid sedimentation in a spinning hollow disk that separated plasma from red and white cells, leaving most of the bacteria suspended in the plasma. Following less than a minute of spinning, the disk was slowed, the plasma was recovered, and the bacteria were isolated by vacuum filtration. The filters were grown on nutrient plates to determine the number of bacteria recovered from the blood. Experiments were done without red blood cell (RBC) lysis and with RBC lysis in the recovered plasma. While there was scatter in the data from blood with low bacterial concentrations, the mean average recovery was 69%. The gender of the blood donor made no statistical difference in bacterial recovery. These results show that this rapid technique recovers a significant amount of bacteria from blood containing clinically relevant low levels of bacteria, producing the bacteria in minutes. These bacteria could subsequently be identified by molecular techniques to quickly identify the infectious organism and its resistance profile, thus greatly reducing the time needed to correctly diagnose and treat a blood infection.
Rapid diagnosis of blood infections requires fast and efficient separation of bacteria from blood. We have developed spinning hollow disks that separate bacteria from blood cells via the differences in sedimentation velocities of these particles. Factors affecting separation included the spinning speed and duration, and disk size. These factors were varied in dozens of experiments for which the volume of separated plasma, and the concentration of bacteria and red blood cells (RBCs) in separated plasma were measured. Data were correlated by a parameter of characteristic sedimentation length, which is the distance that an idealized RBC would travel during the entire spin. Results show that characteristic sedimentation length of 20 to 25 mm produces an optimal separation and collection of bacteria in plasma. This corresponds to spinning a 12-cm-diameter disk at 3,000 rpm for 13 s. Following the spin, a careful deceleration preserves the separation of cells from plasma and provides a bacterial recovery of about 61 ± 5%. K E Y W O R D Sbacterial bloodstream infection, bacterial separation, centrifugation, disk design, E. coli, human blood, sedimentation
This study presents the first work that investigates a preliminary design generating hydrogen from the wastewater of coal utility boilers via an integrated photovoltaic (PV)−electrolysis system. Connecting solar panels, which generates electricity, to an electrolyzer to split water molecules to hydrogen and oxygen is an attractive method to generate hydrogen. A numerical model is developed for the integrated PV solar panels and polymer electrolyte membrane (PEM) electrolyzer. Parallel solar panels and series PEM electrolyzer cells are considered in the present work to reach the optimum arrangement. The essential losses including the activation and ohmic overpotentials and the required energy for rotary equipment (compressors and pumps) are considered in the model. The effect of the working temperature, solar irradiation, and charge transfer coefficient on the efficiency of the system is investigated. The calculated efficiency of the PEM electrolyzer and PV solar panels is in the range of 60−62.5% and 18−20%, respectively. The efficiency of the integrated PV electrolyzer increases as solar irradiation increases. Of particular interest is the potential application of the present design in Texas, which generates 1.43 × 10 4 Nm 3 /year of green hydrogen for $4.67/kg H 2 by only scaling up by 11. This model provides valuable insights for the large-scale hydrogen generation from power plants' wastewater via the coupled solar energy and electrolysis system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.