This dissertation is about filtering and discovering information online while using recommender systems. In the first part of our research, we study the phenomenon of polarization and its impact on filtering and discovering information. Polarization is a social phenomenon, with serious consequences, in real-life, particularly on social media. Thus it is important to understand how machine learning algorithms, especially recommender systems, behave in polarized environments. We study polarization within the context of the users' interactions with a space of items and how this affects recommender systems. We first formalize the concept of polarization based on item ratings and then relate it to the item reviews, when available. We then propose a domain independent data science pipeline to automatically detect polarization using the ratings rather than the properties, typically used to detect polarization, such as item's content or social network topology. We perform an extensive comparison of polarization measures on several benchmark data sets and show that our polarization detection framework can detect different degrees of polarization and outperforms existing measures in capturing an intuitive notion of polarization. We also investigate and uncover certain peculiar patterns that are characteristic of environments where polarization emerges: A machine learning algorithm finds it easier to learn discriminating models in polarized environments: The models will quickly learn to v keep each user in the safety of their preferred viewpoint, essentially, giving rise to filter bubbles and making them easier to learn. After quantifying the extent of polarization in current recommender system benchmark data, we propose new counter-polarization approaches for existing collaborative filtering recommender systems, focusing particularly on the state of the art models based on Matrix Factorization. Our work represents an essential step toward the new research area concerned with quantifying, detecting and counteracting polarization in human-generated data and machine learning algorithms.We also make a theoretical analysis of how polarization affects learning latent factor models, and how counter-polarization affects these models. In the second part of our dissertation, we investigate the problem of discovering related information by recommendation of tags on social media micro-blogging platforms. Real-time micro-blogging services such as Twitter have recently witnessed exponential growth, with millions of active web users who generate billions of micro-posts to share information, opinions and personal viewpoints, daily. However, these posts are inherently noisy and unstructured because they could be in any format, hence making them difficult to organize for the purpose of retrieval of relevant information. One way to solve this problem is using hashtags, which are quickly becoming the standard approach for annotation of various information on social media, such that varied posts about the same or related topic are annotated wi...
Abstract-Recognition of Farsi/Persian handwritten numeral characters has been the focus of study recently and has many applications such as postal code reading and check processing. One important step in any recognition system is feature extraction. We propose to use a small set including only 20 domain specific features which are simple to understand, easy to implement and extracted in a way similar to how humans discriminate digits. These features are extracted by simply counting the pixels which are confined in different curves of digits. Unlike the universal methods this way of feature extraction is related to the problem. Evaluating the proposed features indicates an achievement of 97% recognition rate on Hoda dataset. This method is scale and shift invariant and no pre-processing is needed.Index Terms-Persian handwritten digits, feature extraction, domain specific features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.