We present a novel electromagnetic band-gap (EBG) structure, which can be used to manufacture low-cost waveguiding structures at high frequencies. The unit-cell of the proposed EBG consists of glide-symmetric holes in parallel plate waveguide (PPW). Using this unit-cell in groove gap waveguide technology has a number of advantages over pin-type EBG at high frequencies, such as acquiring higher accuracy because of larger periodicity as well as an easier and cheaper manufacturing process. The performance of the proposed wave-guiding structure is demonstrated using both a straight and a double 90 • bent lines through simulation and measurement.
The behaviour of a glide-symmetric holey periodic structure as electromagnetic band gap (EBG) is here studied. A number of numerical simulations have been carried out in order to define the importance of each constituent parameter of the unit cell. Our proposed structure finds potential application in antennas and circuits based on gap waveguide technology for the millimeter band. Experimental verifications confirm the effects previously analysed with the numerical studies.
Transformation Optics asks Maxwell's equations what kind of electromagnetic medium recreate some smooth deformation of space. The guiding principle is Einstein's principle of covariance: that any physical theory must take the same form in any coordinate system. This requirement fixes very precisely the required electromagnetic medium. The impact of this insight cannot be overestimated. Many practitioners were used to thinking that only a few analytic solutions to Maxwell's equations existed, such as the monochromatic plane wave in a homogeneous, isotropic medium. At a stroke, Transformation Optics increases that landscape from 'few' to 'infinity', and to each of the infinitude of analytic solutions dreamt up by the researcher, corresponds an electromagnetic medium capable of reproducing that solution precisely. The most striking example is the electromagnetic cloak, thought to be an unreachable dream of science fiction writers, but realised in the laboratory a few months after the papers proposing the possibility were published. But the practical challenges are considerable, requiring meta-media that are at once electrically and magnetically inhomogeneous and anisotropic. How far have we come since the first demonstrations over a decade ago? And what does the future hold? If the wizardry of perfect macroscopic optical invisibility still eludes us in practice, then what compromises still enable us to create interesting, useful, devices? While 3D cloaking remains a significant technical challenge, much progress has been made in 2dimensions. Carpet cloaking, wherein an object is hidden under a surface that appears optically flat, relaxes the constraints of extreme electromagnetic parameters. Surface wave cloaking guides subwavelength surface waves, making uneven surfaces appear flat. Two dimensions is also the setting in which conformal and complex coordinate transformations are realisable, and the possibilities in this restricted domain do not appear to have been exhausted yet. Beyond cloaking, the enhanced electromagnetic landscape provided by Transformation Optics has shown how fully analytic solutions can be found to a number of physical scenarios such as plasmonic systems used in electron energy loss spectroscopy (EELS) and cathodoluminescence (CL). Are there further fields to be enriched? A new twist to Transformation Optics was the extension to the space-time domain. By applying transformations to space-time, rather than just space, it was shown that events rather than objects could be hidden from view; Transformation Optics had provided a means of effectively redacting events from history. The hype quickly settled into serious nonlinear optical experiments that demonstrated the soundness of the idea, and it is now possible to consider the practical implications, particularly in optical signal processing, of having an 'interrupt-without-interrupt' facility that the socalled temporal cloak provides. Inevitable issues of dispersion in actual systems have only begun to be addressed. Now that time is included in ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.