The two single-enantiomer phosphoric triamides N-(2,6-difluorobenzoyl)-N',N''-bis[(S)-(-)-α-methylbenzyl]phosphoric triamide, [2,6-F-CHC(O)NH][(S)-(-)-(CH)CH(CH)NH]P(O), denoted L-1, and N-(2,6-difluorobenzoyl)-N',N''-bis[(R)-(+)-α-methylbenzyl]phosphoric triamide, [2,6-F-CHC(O)NH][(R)-(+)-(CH)CH(CH)NH]P(O), denoted D-1, both CHFNOP, have been investigated. In their structures, chiral one-dimensional hydrogen-bonded architectures are formed along [100], mediated by relatively strong N-H...O(P) and N-H...O(C) hydrogen bonds. Both assemblies include the noncentrosymmetric graph-set motifs R(10), R(6) and C(8), and the compounds crystallize in the chiral space group P1. Due to the data collection of L-1 at 120 K and of D-1 at 95 K, the unit-cell dimensions and volume show a slight difference; the contraction in the volume of D-1 with respect to that in L-1 is about 0.3%. The asymmetric units of both structures consist of two independent phosphoric triamide molecules, with the main difference being seen in one of the torsion angles in the OPNHCH(CH)(CH) part. The Hirshfeld surface maps of these levo and dextro isomers are very similar; however, they are near mirror images of each other. For both structures, the full fingerprint plot of each symmetry-independent molecule shows an almost asymmetric shape as a result of its different environment in the crystal packing. It is notable that NMR spectroscopy could distinguish between compounds L-1 and D-1 that have different relative stereocentres; however, the differences in chemical shifts between them were found to be about 0.02 to 0.001 ppm under calibrated temperature conditions. In each molecule, the two chiral parts are also different in NMR media, in which chemical shifts and P-H and P-C couplings have been studied.
The crystal structures of two single-enantiomer amidophosphoesters with an (O)2P(O)(N) skeleton and one single-enantiomer phosphoric triamide with an (N)2P(O)(N) skeleton were studied. The compounds are diphenyl [(R)-(+)-α-4-dimethylbenzylamido]phosphate, (I), and diphenyl [(S)-(−)-α-4-dimethylbenzylamido]phosphate, (II), both C21H22NO3P, and N-(2,6-difluorobenzoyl)-N′,N′′-bis[(R)-(+)-α-ethylbenzyl]phosphoric triamide, C25H28F2N3O2P, (III). The asymmetric units contain two amidophosphoester molecules for (I) and (II), and one phosphoric triamide molecule for (III). In the crystal structures of (I) and (II), molecules are assembled in a similar one-dimensional chiral ribbon architecture, but with almost a mirror-image relationship with respect to each other through N—H...O(P) and C—H...O(P) hydrogen bonds along [010]. In the crystal structure of (III), the chiral tape architecture along [100] is mediated by N—H...O(P) and N—H...O(C) hydrogen bonds, and the tapes are connected into slabs by C—H...O interactions (along the ab plane). The differences/similarities of the two diastereotopic phenoxy groups in (I)/(II) and the two chiral amine fragments in (III) were studied on the grounds of geometry, conformation and contribution to the crystal packing, as well as 1H and 13C signals in a solution NMR study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.