Purpose Breast cancer is one of the deadliest cancers among women worldwide which its early detection may significantly reduce its mortality rate. Thermgraphy is a new, non-invasive, non-painful, and low-cost modality that detects abnormalities by detecting heat from the breast surface. Method Recent research has applied deep learning to early breast cancer diagnosis via thermography, using only the frontal view of thermograms. We combine several views of thermal images to improve the performance of pre-trained deep learning architectures in this article. This goal is achieved by combining frontal-45 data with lateral-45 and lateral45 thermograms to construct a detection model that utilizes transfer learning. Result Research in this area uses the Database for Mastology Research (DMR) with infrared images. In this study, transfer based deep learning methods are demonstrated to be effective in fusing several views of thermograms to diagnose breast cancer in a manner that can result in a sensitivity increase of 2-15 percent and a specificity increase of 2-30 percent compared to other deep learning-based or handcrafted schemes. Conclusion Using multiple views of thermograms and transfer learning, this paper proposes a method for improving breast cancer diagnosis. Using methods based on deep learning and methods based on hand-crafted features, we evaluated the performance of the proposed model. Using the obtained results as a basis for future research, the proposed design can be improved and developed as a valid approach in interpreting breast thermography images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.