Metamaterial antennas are some sort of antennas which utilize metamaterials to improve the efficiency of small (small electrical) antenna systems and also enhance the antenna's radiation pattern. The unusual properties of metamaterials such as coefficients of permittivity and permeability, as well as the negative refractive index, have led to increase the use of these artificial materials in variant fields including microwave engineering and medical applications. This paper explores a metamaterial coating and impact of it on a microstrip patch antenna from two different perspectives on satellite and biomedical applications. For this purpose, a microstrip antenna is modeled using CST software and then a particular metamaterial cover is configured upon the patch antenna to enhance its efficiency such as radiation pattern and directivity. The method is arranged in several stages and the output of the antenna is then analyzed in each stage after applying some adjustments to the design process. On the other hand, because the type and position of the applicator on the tissue is a consequential variable, in order to improve the effectiveness of hyperthermia treatment in medical applications, in the next step the metamaterial antenna is applied to hyperthermia treatment on the body tissue. Eventually the results of metamaterial antenna are compared with the usual antenna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.