This paper considers the problem of real-time detection and classification of power quality disturbances in power delivery systems. We propose a sequential and multivariate disturbance detection method (aiming for quick and accurate detection). Our proposed detector follows a non-parametric and supervised approach, i.e., it learns nominal and anomalous patterns from training data involving clean and disturbance signals. The multivariate nature of the method enables joint processing of data from multiple meters, facilitating quicker detection as a result of the cooperative analysis. We further extend our supervised sequential detection method to a multi-hypothesis setting, which aims to classify the disturbance events as quickly and accurately as possible in a real-time manner. The multi-hypothesis method requires a training dataset per hypothesis, i.e., per each disturbance type as well as the ’no disturbance’ case. The proposed classification method is demonstrated to quickly and accurately detect and classify power disturbances.
This paper considers the real-time detection of anomalies in high-dimensional systems. The goal is to detect anomalies quickly and accurately so that the appropriate countermeasures could be taken in time, before the system possibly gets harmed. We propose a sequential and multivariate anomaly detection method that scales well to high-dimensional datasets. The proposed method follows a nonparametric, i.e., data-driven, and semi-supervised approach, i.e., trains only on nominal data. Thus, it is applicable to a wide range of applications and data types. Thanks to its multivariate nature, it can quickly and accurately detect challenging anomalies, such as changes in the correlation structure and stealth low-rate cyberattacks. Its asymptotic optimality and computational complexity are comprehensively analyzed. In conjunction with the detection method, an effective technique for localizing the anomalous data dimensions is also proposed. We further extend the proposed detection and localization methods to a supervised setup where an additional anomaly dataset is available, and combine the proposed semi-supervised and supervised algorithms to obtain an online learning algorithm under the semi-supervised framework. The practical use of proposed algorithms are demonstrated in DDoS attack mitigation, and their performances are evaluated using a real IoT-botnet dataset and simulations.
This paper considers the real-time detection of abrupt and persistent anomalies in high-dimensional data streams. The goal is to detect anomalies quickly and accurately so that the appropriate countermeasures could be taken in time before the system possibly gets harmed. We propose a sequential and multivariate anomaly detection method that scales well to high-dimensional datasets. The proposed method follows a nonparametric, i.e., data-driven, and semi-supervised approach, i.e., trains only on nominal data. Thus, it is applicable to a wide range of applications and data types. Thanks to its multivariate nature, it can quickly and accurately detect challenging anomalies, such as changes in the correlation structure. Its asymptotic optimality and computational complexity are comprehensively analyzed. In conjunction with the detection method, an effective technique for localizing the anomalous data dimensions is also proposed. The practical use of proposed algorithms are demonstrated using synthetic and real data, and in variety of applications including seizure detection, DDoS attack detection, and video surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.