Vacuum Insulation Panels (VIPs) are a kind of the super-insulated materials (SIMs). VIPs are innovative material in various fields like the building sector as it encompasses a higher thermal resistance per unit of thickness compared to conventional insulation. To extensively use VIPs in the building sector, comprehensive performance analysis, and their properties such as thermal conductivity valuations are required to be done under simulated conditions to evaluate its longterm performance. However, different VIPs have varying durability, and as it stands, there is no comprehensive understanding of how all VIPs will behave in real conditions. This research investigates the effect of multiple variables (such as temperature, relative humidity) on VIP service life. The purpose of this research is to validate the theoretical ageing model of VIPs. First, the experimental thermal conductivity results from seven samples of three different VIP categories are collected using a heat flow meter. To measure the accelerated ageing results over 25 years, Arrhenius equation is applied. Next, NRC theoretical model is used to predict the ageing response of the samples. Finally, an analytical method is employed to verify and validate this model based on the collected data. Results shows that effect of ageing and environmental temperature have higher impacts on the performance of fibreglass panels than the fumed silicas. Additionally, the aging effects analysis reveals that microporous silica VIP products would maintain their superior thermal performance over time. Keywords: Vacuum insulation panel, Ageing, Thermal conductivity, accelerated ageing, modelling
Vacuum Insulation Panels (VIPs) encompass a higher thermal resistance per unit of thickness compared to any other kind of insulation. However, their aging has often shown some critical concerns among stakeholders. To support the broader use of VIPs in the building sector, a comprehensive analysis of the physical properties of VIPs and in particular of their thermal conductivity over longperiods is required. This research investigates the effect of the temperature and relative humidity on the service life and thermal conductivity of VIPs. The scope of this study is to validate existing aging models for VIPs. First, the experimental results of the thermal conductivity for five VIPs both in pristine and in laboratory-accelerated conditions are described. Then, an analytical aging method is employed to validate the collected data. Results show that the aging has a more significant impact on the performance of VIPs with a core of fiberglass-core than with VIPs with a core of fumed silica.
Vacuum Insulation Panels (VIPs) are a kind of the super-insulated materials (SIMs). VIPs are innovative material in various fields like the building sector as it encompasses a higher thermal resistance per unit of thickness compared to conventional insulation. To extensively use VIPs in the building sector, comprehensive performance analysis, and their properties such as thermal conductivity valuations are required to be done under simulated conditions to evaluate its longterm performance. However, different VIPs have varying durability, and as it stands, there is no comprehensive understanding of how all VIPs will behave in real conditions. This research investigates the effect of multiple variables (such as temperature, relative humidity) on VIP service life. The purpose of this research is to validate the theoretical ageing model of VIPs. First, the experimental thermal conductivity results from seven samples of three different VIP categories are collected using a heat flow meter. To measure the accelerated ageing results over 25 years, Arrhenius equation is applied. Next, NRC theoretical model is used to predict the ageing response of the samples. Finally, an analytical method is employed to verify and validate this model based on the collected data. Results shows that effect of ageing and environmental temperature have higher impacts on the performance of fibreglass panels than the fumed silicas. Additionally, the aging effects analysis reveals that microporous silica VIP products would maintain their superior thermal performance over time. Keywords: Vacuum insulation panel, Ageing, Thermal conductivity, accelerated ageing, modelling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.