The recent prevalence of coronavirus disease in 2019 (COVID-19) has triggered widespread global health concerns.Antiviral drugs based on phosphoramides have significant inhibitory activity against the main protease (M
pro
) of the virus and prevent transcription and viral replication. Hence, in order to design and introduce a group of inhibitors affecting the coronavirus, 35 phosphoramide compounds based on phospho-guanine and phospho-pyrazine derivatives were selected for molecular docking study. The results showed that most phosphoguanides containing the amino benzimidazole have a high interaction tendency with COVID-19. Among them, compound 19 was identified as the strongest inhibitor with the -9.570 kcal/mol binding energy whereas, the binding energy of Remdesivir is -6.75 kcal/mol. The quantitative structure-activity relationship (QSAR) results demonstrated that the number of aromatic rings, amide's nitrogens and their ability in π-staking, and hydrogen interactions with M
pro
active sites are major factors contributing to the inhibitory activity of these compounds.Also, the NCI-RDG and DFT results were in good accordance with those of QSAR and molecular docking. The findings of this investigation can be underlying the synthesis of effective and efficient drugs against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.