A biomarker with high specificity and sensitivity, is a basic requirement for non-invasive cancer diagnosis. Exosomes are a type of lipid bilayer extracellular vesicles (EVs), containing different components, including proteins, lipids, DNA, messenger RNA (mRNA), and non-coding RNAs. Increasing evidence indicates that nucleic acids are protected by exosome lipid membrane. These vesicles are almost released from all cell types, into biological fluids. In cancer, the expression of microRNAs (miRNAs), located in the tumor cell-derived exosomes, is deregulated and it could be led to metastasis and therapy resistance. Due to the presence of exosomes in various body fluids and the stability of miRNAs in exosomes, exosomal miRNAs can provide a new class of biomarkers for early and minimally invasive cancer diagnosis. In this article, we review the miRNAs and their roles in cancer. Furthermore, we explain the different types of EVs, especially exosomes, and their functional roles in cancer. At the end, we discuss about the importance of exosomal miRNAs for cancer diagnosis. As well as, we briefly summarize the exosome isolation techniques and obstacles, limiting the clinical applications of exosomal miRNAs.
Background Central serous chorioretinopathy (CSC) is characterized by serous detachment of the neural retina with dysfunction of the choroid and retinal pigment epithelium (RPE). The effects on the retina are usually self limited, although some people are left with irreversible vision loss due to progressive and permanent photoreceptor damage or RPE atrophy. There have been a variety of interventions used in CSC, including, but not limited to, laser treatment, photodynamic therapy (PDT), and intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) agents. However, it is not known whether these or other treatments offer significant advantages over observation or other interventions. At present there is no evidence-based consensus on the management of CSC. Due in large part to the propensity for CSC to resolve spontaneously or to follow a waxing and waning course, the most common initial approach to treatment is observation. It remains unclear whether this is the best approach with regard to safety and efficacy. Objectives To compare the relative effectiveness of interventions for central serous chorioretinopathy. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2015, Issue 9), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to October 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 October 2015. Selection criteria Randomized controlled trials (RCTs) that compared any intervention for CSC with any other intervention for CSC or control. Data collection and analysis Two review authors independently selected studies and extracted data. We pooled data from all studies using a fixed-effect model. For interventions applied to the eye (i.e. not systemic interventions), we synthesized direct and indirect evidence in a network meta-analysis model. Main results We included 25 studies with 1098 participants (1098 eyes) and follow-up from 16 weeks to 12 years. Studies were conducted in Europe, North and South America, Middle East, and Asia. The trials were small (most trials enrolled fewer than 50 participants) and poorly reported; often it was unclear whether key aspects of the trial, such as allocation concealment, had been done. A substantial proportion of the trials were not masked. The studies considered a variety of treatments: anti-VEGF (ranibizumab, bevacizumab), PDT (full-dose, half-dose, 30%, low-fluence), laser treatment (argon, krypton and micropulse laser), beta-blockers, carbonic anhydrase inhibitors, Helicobactor pylori treatment, and nutritional supplements (Icaps, lutein); there were only one or two tri...
Probiotics and fermented milk products have attracted the attention of scientists from various fields, such as health care, industry and pharmacy. In recent years, reports have shown that dietary probiotics such as kefir have a great potential for cancer prevention and treatment. Kefir is fermented milk with Caucasian and Tibet origin, made from the incubation of kefir grains with raw milk or water. Kefir grains are a mixture of yeast and bacteria, living in a symbiotic association. Antibacterial, antifungal, anti-allergic and anti-inflammatory effects are some of the health beneficial properties of kefir grains. Furthermore, it is suggested that some of the bioactive compounds of kefir such as polysaccharides and peptides have great potential for inhibition of proliferation and induction of apoptosis in tumor cells. Many studies revealed that kefir acts on different cancers such as colorectal cancer, malignant T lymphocytes, breast cancer and lung carcinoma. In this review, we have focused on anticancer properties of kefir.
Non-small-cell lung carcinoma (NSCLC) is one of the most lethal malignancies that include more than 80% of lung cancer cases worldwide. During the past decades, plants and plant-derived products have attracted great interest in the treatment of various human diseases. Curcumin, the turmeric isolated natural phenolic compound, has shown a promising chemo-preventive and anticancer agent. Numerous studies have shown that curcumin delays the initiation and progression of NSCLC by affecting a wide range of molecular targets and cell signalling pathways including NF-kB, Akt, MAPKS, BCL-2, ROS and microRNAs (miRNAs). However, the poor oral bioavailability and low chemical stability of curcumin remain as major challenges in the utilisation of this compound as a therapeutic agent. Different analogs of curcumin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.