Introduction: The extensive drug-resistant (XDR) Pseudomonas aeruginosa (P. aeruginosa) causes a range of infections with high mortality rate, which inflicts additional costs on treatment. The use of nano-biotechnology-based methods in medicine has opened a new perspective against drug-resistant bacteria. The aim of this study was to evaluate the effectiveness of the AgNO3 nanoparticles alone and conjugated with imipenem (IMI) to combat extensively drug-resistant P. aeruginosa. Methods: Antibiotic susceptibility was carried out using disc diffusion method. Detection of different resistant genes was performed using standard polymerase chain reaction (PCR). The chemically synthesized AgNO 3 particles were characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) methods. Fourier transform infrared spectroscopy (FTIR) was accomplished to confirm the binding of AgNO 3 with IMI. The microdilution broth method was used to obtain minimum inhibitory concentration (MIC) of AgNO 3 and IMI-conjugated AgNO 3. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was carried out on L929 cell line to study the cytotoxicity of nanoparticles. The data were analyzed by Eta correlation ratio and chisquare (X 2) test. Results: Analysis of the antibiotic resistance pattern showed that 12 (24%) isolates were XDR, and MIC values of IMI were between 64 and 128 μg/mL. Frequency of SHV, TEM, CTX M, IMP, VIM, OPR, SIM, SPM, GIM, NDM, VEB, PER, KPC, OXA, intI, intII, and intIII genes were 29 (58%), 26 (52%), 26 (52%), 32 (64%), 23 (46%), 43 (86%), 3 (6%), 6 (12%), 3 (6%), 4 (8%), 7 (14%), 6 (12%), 18 (36%), 4 (8%), 19 (38%), 16 (32%), and 2 (4%), respectively. The XRD, SEM, DLS, and FTIR analysis confirmed the synthesis of AgNO 3 nanoparticles and their conjugation with IMI. The AgNO 3 nanoparticles had antimicrobial activity, and their conjugation with IMI showed enhanced effectiveness against XDR isolates. The synthesized AgNO 3 showed no cytotoxic effects. Conclusion: The results suggest that IMI-conjugated AgNO 3 has a strong potency as a powerful antibacterial agent against XDR P. aeruginosa.