Natural Killer (NK) cells are innate immune cells with the unique ability to recognize and kill virus-infected and cancer cells without prior immune sensitization. Due to their expression of the Fc receptor CD16, effector NK cells can kill tumor cells through antibody-dependent cytotoxicity, making them relevant players in antibody-based cancer therapies. The role of NK cells in other approved and experimental anti-cancer therapies is more elusive. Here, we review the possible role of NK cells in the efficacy of various anti-tumor therapies, including radiotherapy, chemotherapy, and immunotherapy, as well as the impact of these therapies on NK cell function.
Granulocyte colony-stimulating factor (G-CSF) is the major regulator of hemopoiesis and granulopoiesis. However, overexpression of G-CSF has been implicated in several important processes in tumor biology such as tumor growth, angiogenesis, and metastasis. Four different mRNA isoforms resulting from alternative splicing have been reported for G-CSF (transcript variants 1, 2, 3 and 4). The mRNAs and protein products of splice variants 1 and 2 have been isolated for the first time, from tumor cell lines. In the present study for the first time we isolated the G-CSF transcript variant 4 encoding G-CSF isoform D from a highly malignant tumor cell line (Mehr80) with overexpression of G-CSF.
Both the full-length G-CSF isoform B and G-CSF isoform D were cloned from Mehr80 cell line, overexpressed in Escherichia coli as N-terminal glutathione-S-transferase fusion proteins in the form of inclusion bodies and affinity purified by the batch method using glutathione-Sepharose 4B resin.
Both fusion proteins were successfully cloned and expressed. Folded recombinant proteins were solubilized from inclusion bodies using sarkosyl, Triton X-114 and CHAPS and purified. The purity of G-CSF isoforms was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and they were clearly detected in western blot analysis using anti-G-CSF polyclonal antibody.
The G-CSF plays various roles in physiological and pathological conditions, however to date, the differential function of G-CSF isoforms remains unknown. Considering the fact that G-CSF isoform D was isolated from a highly malignant tumor cell line with overexpression of G-CSF, the role of this splice variant in tumorigenesis requires further investigation.
Background. Due to their ability to recruit immune cells to kill tumor cells directly, bispecific T cell engager antibodies (BiTE) hold great potential in T cell redirecting therapies. BiTE is able to activate T cells through CD3 and target them to tumor-expressed antigens. However, there are many components in the tumor microenvironment (TME) such as mesenchymal stem cells (MSCs) that may interfere with BiTE function. Herein, we designed an anti-PDL1-BiTE that targets programmed death ligand 1 (PDL1) and CD3 and investigated its effect on PDL1pos cancer cells in the presence or absence of adipose-derived MSCs (ASCs). Method. Our anti-PDL1-BiTE comprises of VL and VH chains of anti-CD3 monoclonal antibody (mAb) linked to the VL and VH chains of anti-PDL1 mAb, which simultaneously bind to the CD3ε subunit on T cells and PDL1 on tumor cells. Flow cytometry was employed to assess the strength of binding of anti-PDL1-BiTE to tumor cells and T cells. Cytotoxicity, proliferation, and activation of peripheral blood lymphocyte (PBLs) were evaluated by CFSE assay and flow cytometry after using anti-PDL1-BiTE in the presence or absence of ASCs and their conditioned media (C.M.). Results. Anti-PDL1-BiTE had the ability to induce selective lysis of PDL1pos U251-MG cancer cells while PDL1neg cells were not affected. Also, anti-PDL1-BiTE significantly stimulated peripheral blood lymphocyte (PBL) proliferation and CD69 expression. ASCs/C.M. did not show a significant effect on the biological activity of anti-PDL1-BiTE. Conclusion. Overall, anti-PDL1-BiTE selectively depletes PDL1pos cells and represents a new immunotherapeutic approach. It would increase the accumulation of T cells and can improve the prognosis of PDL1pos cancers in spite of the immunomodulatory effects of ASCs and C.M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.