This work was aimed to investigate the behavior, morphology, structure, and dynamical properties of pure ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) confined between two parallel and flat graphene sheets at different interwall distances, H. Thus, molecular dynamic (MD) simulations were performed for different interwall distances including (10, 14, 16, 20, 23, and 28) Å at seven temperatures from 278 to 308 K. These results showed that the distribution and orientation of cations and anions on the graphene sheets depended on H. At the shortest H, a dense monolayer of the anions and cations was formed between two graphene sheets. The number of these layers increased as H increased. The potential energy diagram as a function of H demonstrated a minimum potential energy at H = 16 Å. Also, there was a minimum overlap between the density profiles of the cations and anions at H = 16 Å. Diffusion coefficients of the cations and anions increased as temperature and H increased. Moreover, slope of the plot of the diffusion coefficients of the cations and anions versus H significantly changed at H = 16 Å. Orientation functions revealed that most of the cations oriented parallel to the graphene sheets.
Flow separation near the fluid–solid surface has attracted attention for decades. It is critical to understand the behavior of separated flow adjacent to the solid walls to broaden its range of potential applications. Therefore, we conducted molecular dynamics investigations to consider water flow separation at the water–carbon nanotube (CNT) interface for different diameters of CNTs between 13 and 50 Å and different pressures of 0.1–1.254 GPa. Density heat maps indicated that water flow separation is observed for all CNTs under high pressures, and an empty space of water molecules or evacuation is formed behind the CNTs. It is shown that in CNTs with small diameters, (10, 10) and (20, 20), the structure of the first layer (FL) of water molecules or hydrated layer adjacent to the CNT wall is completely preserved, indicating that evacuation occurs from behind the CNTs. In (30, 30) and (40, 40) CNTs, flow separation occurred from the FL of water molecules near the solid surface, and the layered structure of water around CNTs is completely destroyed. Our findings of fluid–solid and fluid–fluid interaction energies suggested that the flow separation can be due to an attraction between the FL of water molecules and CNT and a repulsion between the water molecules in the hydrated layer and the outer layers. Moreover, analyzing the relationship between the CNT size and flow separation revealed that in the case of small CNTs, there are extra water molecules that contribute to the structural stability of the hydrated layer by strengthening the repulsive interaction in the liquid–liquid surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.