Highlights
The growth, biosynthesis of pigments and other macromolecules appeared to be strong predictors in appraisal of Pb tolerance/susceptibility in durum wheat.
Germplasm of CBD59, CBD63 and CBD66 can be exploited for future selection and breeding programs.
The bioaccumulation of metal in grains of some cultivars of durum wheat much below than permissible limits set by FAO/WHO is of great significance owing to its implications for food safety.
Pakistan currently faces an acute shortage of water, which has increasingly been devastating for the past few decades. In order to mitigate water scarcity, agriculture sector of the country started using wastewater discharged from various industries. The present study aims to assess the impact of fertilizer industry effluent on Jatropha curcas L. and Pongamia pinnata L., which are popular biofuel tree species. Initially, one-year-old saplings were acclimatized in pots, then wastewater was applied in diluted concentrations of effluent using 20 and 40 mL L-1 to the treatment group while control plants were irrigated with tap water. The physico-chemical properties of the effluent showed high values 179 mg L-1 for biological oxygen demand (BOD), 257 mg L-1 for chemical oxygen demand (COD) and 1200 mg L-1 for total dissolved solid (TDS), respectively. Surprisingly, high concentrations of arsenic (15 μg L-1) and cadmium (0.78 mg L-1) were present but chromium (Cr) concentration was found within permissible limit to WHO. The levels applied caused a significant (p≤0.05) increase in plant growth and biomass. The extent of membrane damage assessed via malondialdehyde (MDA)production was also greater in the roots of P. pinnata while reverse was true for shoots of J. curcas. A more profound (p≤0.05) reduction in photosynthetic pigments and carotenoids was observed in P. pinnata at concentrated level of effluent. Overall, the study signifies a 2-folds potential of biofuel tree species for efficient reuse of wastewater, as well as for remediation of metals from wastewater and soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.