Power Line Communication (PLC) is used to transmit high-fidelity data on internal cell characteristics from within instrumented cells to an external Battery Management System (BMS). Using PLC is beneficial, as it avoids the need for a complex and heavyweight wiring harness within a battery. The use of advanced modulation, such as Quadrature Amplitude Modulation (QAM), is considered here. The existing experimental results of lithium-ion cell impedance characteristics for frequencies of 100 kHz-200 MHz are exploited in order to create a realistic battery model. This model is used to determine the effectiveness and optimal properties of PLC with QAM, as a means of in situ battery communication for Battery Electric Vehicles (BEVs) in combination with a real-world dynamic drive profile. Simulations reveal that the performance of the PLC system is heavily dependent on the selected carrier frequency due to the significant changes in reactance and internal resistance of the lithium-ion cells tested. Furthermore, cells placed in parallel display a decreased performance compared with cells in series. The results highlight that the optimal carrier frequency for in situ QAM-based PLC for a lithium-ion battery system is 30 MHz, and that additional signal conditioning is required for 4-QAM and higher modulation orders.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Power line communication within a lithium-ion battery allows for high fidelity sensor data to be transferred between sensor nodes of each instrumented cell within the battery pack to an external battery management system. In this paper, the changing characteristics of the lithium-ion cell at various states of charge are measured, analysed, and compared to understand their effectiveness on the communication channel of a power line communication system for carrier frequencies of 10 MHz to 6 GHz. Moreover, the use of quadrature amplitude modulation (QAM) is investigated to determine its effectiveness as a state-of-the-art modulation method for the same carrier frequency range. The overall results indicate that certain carrier frequencies and QAM orders may not be suitable for the in situ battery pack power line communication due to changes in battery impedance with certain lithium-ion cell states of charge, which cause an increase in error vector magnitude, bit error ratio, and symbol error ratio. Recommendations and trends on the impact of these changing characteristics based upon empirical results are also presented in this paper.
How to cite:Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
How to cite:Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.