the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Purpose Additive manufacturing (AM) offers potential solutions when conventional manufacturing reaches its technological limits. These include a high degree of design freedom, lightweight design, functional integration and rapid prototyping. In this paper, the authors show how AM can be implemented not only for prototyping but also production using different optimization approaches in design including topology optimization, support optimization and selection of part orientation and part consolidation. This paper aims to present how AM can reduce the production cost of complex components such as jet engine air manifold by optimizing the design. This case study also identifies a detailed feasibility analysis of the cost model for an air manifold of an Airbus jet engine using various strategies, such as computer numerical control machining, printing with standard support structures and support optimization. Design/methodology/approach Parameters that affect the production price of the air manifold such as machining, printing (process), feedstock, labor and post-processing costs were calculated and compared to find the best manufacturing strategy. Findings Results showed that AM can solve a range of problems and improve production by customization, rapid prototyping and geometrical freedom. This case study showed that 49%–58% of the cost is related to pre- and post-processing when using laser-based powder bed fusion to produce the air manifold. However, the cost of pre- and post-processing when using machining is 32%–35% of the total production costs. The results of this research can assist successful enterprises, such as aerospace, automotive and medical, in successfully turning toward AM technology. Originality/value Important factors such as validity, feasibility and limitations, pre-processing and monitoring, are discussed to show how a process chain can be controlled and run efficiently. Reproducibility of the process chain is debated to ensure the quality of mass production lines. Post-processing and qualification of the AM parts are also discussed to show how to satisfy the demands on standards (for surface quality and dimensional accuracy), safety, quality and certification. The original contribution of this paper is identifying the main production costs of complex components using both conventional and AM.
No abstract
Purpose The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing technique, which can be applied to a very wide range of materials, with particular emphasis on metals. In this paper, the governing principles of both laser-based subtractive of metals (LB-SM) and laser-based powder bed fusion (LB-PBF) of metallic materials are discussed and evaluated in terms of performance and capabilities. Using the principles of both laser-based methods, some new potential hybrid additive manufacturing options are discussed. Design methodology approach Production characteristics, such as surface quality, dimensional accuracy, material range, mechanical properties and applications, are reviewed and discussed. The process parameters for both LB-PBF and LB-SM were identified, and different factors that caused defects in both processes are explored. Advantages, disadvantages and limitations are explained and analyzed to shed light on the process selection for both additive and subtractive processes. Findings The performance of subtractive and additive processes is highly related to the material properties, such as diffusivity, reflectivity, thermal conductivity as well as laser parameters. LB-PBF has more influential factors affecting the quality of produced parts and is a more complex process. Both LB-SM and LB-PBF are flexible manufacturing methods that can be applied to a wide range of materials; however, they both suffer from low energy efficiency and production rate. These may be useful when producing highly innovative parts detailed, hollow products, such as medical implants. Originality value This paper reviews the literature for both LB-PBF and LB-SM; nevertheless, the main contributions of this paper are twofold. To the best of the authors’ knowledge, this paper is one of the first to discuss the effect of the production process (both additive and subtractive) on the quality of the produced components. Also, some options for the hybrid capability of both LB-PBF and LB-SM are suggested to produce complex components with the desired macro- and microscale features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.