Many numerical models for simulating freezing and thawing phenomena of soil have been developed due to emerging geotechnical issues in cold regions. In particular, coupled thermo‐hydro‐mechanical (THM) analysis is used to evaluate complicated deformation, thermal, and moisture transport behavior of freezing–thawing soils. This study proposes a soil‐freezing characteristic curve (SFCC) that is robust and adaptive with various computational frameworks, including the THM approach. The proposed SFCC can also account for different soil types by incorporating the particle size distribution. Here an automatic regression scheme is adopted to update the SFCC associated with deformation and thermal changes. In addition, a smoothing algorithm is adopted to prevent a sharp change of the SFCC due to phase transition between the liquid water and crystal ice. Based on experimental works in the literature, the applicability of our model is demonstrated when the initial water contents and soil particle distribution differ. We further investigate the performance of the proposed SFCC as a constitutive model within a simplified THM framework. Our results show that the proposed model captures the desired behavior of different soil types in the freezing process, such as freezing temperature depreciation, the effect of compaction, and mechanical loading on unfrozen water content.
This paper presents a thermo-hydro-mechanics theory and corresponding computational framework to capture the freezethaw action of frozen porous media and associated frost action under chilled gas pipelines. Based on the mixture theory, frost-susceptible soils are formulated to capture the Darcy flux and thermal actions below the pipelines. Constitutive models that combine the cryo-suction are presented to reproduce the changes in volume, strength, and thermal characteristics of solid grain, pore water, and ice crystal. A generalized hardening rule is adopted to replicate the elasto-plastic responses which strengthens the frozen porous media due to ice crystallization. Changes in permeability and thermal diffusivity are also incorporated by considering the phase transitions of pore water and ice crystal. Numerical examples for pipeline applications are designed to analyze the influence of the freezing and melting process around the pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.