PurposeThis paper investigates the influence of moisture absorption on the mechanical properties of carbon/epoxy composites.Design/methodology/approachThree types of specimens are prepared, which are for longitudinal, transverse and shear tests. Specimens are immersed in distilled water at 70°C for 1, 3 and 9 months. These correspond to the moisture content of 2.2, 3.8 and 5.3%.FindingsCompared to the values at dry condition, the longitudinal modulus, shear modulus and Poisson's ratio are invariant with the moisture content. However, the transverse modulus, transverse strength and shear strength are sensitive to moisture attack. The maximum degradation is 33%, 76 and 33% for the three properties, respectively. It is also worth to note that the longitudinal tensile strength is stable at 1 and 9 months of immersion. However, at 3-months ageing period, there is only 67% of the longitudinal tensile strength retained.Originality/valueThe experimental results are fitted with a residual property model. Results show comparatively good fit, with a difference within 16% except the longitudinal tensile strength at 9-months immersion. This highlights that the model is not suitable to fit the experimental data with a fluctuated trend.
In recent decades, flax fibre has become a popular natural resource as reinforcement in polymeric composites. However, the pure mode characterisation of flax fibre composites is rather limited. Furthermore, the mixed-mode delamination is not yet available. Nevertheless, delamination behaviour is important to be characterised as it is a major problem in composite laminates. This study examined the delamination behaviour of a woven flax/epoxy composite. Specimens were tested using mode I double cantilever beam, mode II endnotched flexure and mixed-mode I+II single leg bending tests. Results showed that the mode I, mode II and mixed-mode I+II fracture toughness were 363.23, 962.17 and 649.06 N m −1 , respectively. When the fracture toughness values were fitted using Benzeggagh-Kenane criterion, it was found that the best-fit material parameter η was attained at 0.88. This information is useful to estimate the variation of fracture toughness with the mode ratio. Finally, through scanning electron micrographs, it was noticed that fibre/matrix debonding was the major fracture mechanism in all loading modes. In conclusion, the findings from this study suggested that the composite was suitable to be used for structural applications under mixed-mode loading.
It is necessary to consider the influence of moisture damage on the interlaminar fracture toughness for composite structures that are used for outdoor applications. However, the studies on the progressive variation of the fracture toughness as a function of moisture content M (%) is rather limited. In this regard, this study focuses on the characterization of mode II delamination of carbon/epoxy composites conditioned at 70 °C/85% relative humidity (RH). End-notched flexure test is conducted for specimens aged at various moisture absorption levels. Experimental results reveal that mode II fracture toughness degrades with the moisture content, with a maximum of 23% decrement. A residual property model is used to predict the variation of the fracture toughness with the moisture content. Through numerical simulations, it is found that the approaches used to estimate the lamina and cohesive properties are suitable to obtain reliable simulation results. In addition, the damage initiation is noticed during the early loading stage; however, the complete damage is only observed when the numerical peak load is achieved. Results from the present research could serve as guidelines to predict the residual properties and simulate the mode II delamination behavior under moisture attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.