The photostability of thin films of poly (Fluorostyrene) isomers was studied by irradiation with UV-light, in presence of air at room temperature. The irradiated polymer films were exposed to different intervals of time and the degradation process was investigated with absorption, fluorescence and FT-IR spectroscopic methods. The influence of phthalate and terephthalate plasticizers on photo-oxidative degradation was also investigated. Blending with these plasticizers was found to decrease the stability of the irradiated polymers. The same observation was noticed in the photodegradation of other substituted polystyrenes films. The intensity of absorption was also found to increase with time of irradiation and in the intensity of a new absorption band at longer wavelength. In addition the formation on new fluorescence band at longer wavelength for the irradiated film is an evidence of photodegradation of the irradiated polymer films. The FT-IR spectra of irradiated polymers and for blended polymer films with phthalates and terephthalate, showed an increase in the absorption bands of these isomers indicating the possibility of degradation. The mechanism of photodegradation of these isomers was found to be similar to that of polystyrene. The order of photostability of these isomers was found that poly (p-fluorostyrene) is the most stable isomer and, poly (o-fluorostyrene) is the lowest stable isomer towards irradiation effect.
The UV irradiation and blending effects on stability of Poly(Fluorostyrene) isomers in solution were studied at different intervals of irradiation time in presence of air. The increase in irradiation time of these isomers caused an increase in the intensity of the absorption band and an increase in the intensity of the absorption of new broad band at longer wavelength, thus indicating a possibility of photodegradation of polymeric chains. The influence of added dioctyl phthalate and dioctyl terephthalate plasticizers on photooxidative degradation was also investigated and was found to increase the photodegradation processes in polymeric chains. On the other hand, the intensity of excimer and monomer fluorescence bands maxima was also found to decrease with increase in irradiation times. These changes may be attributed to the formation of new photoproducts resulted from the photodegradation of irradiated polymeric chains. The decrease in polarity of used solvents caused a considerable enhancement to the intensity of the polymer fluorescence band and accelerated photodegradation. A proposed mechanism is suggested to account for the effects of added plasticizers, the increase in irradiation time, and polarity of solvents on photodegradation and photooxidation processes in polymeric chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.