Triblock copolymers were polymerised by the ring-opening reaction of D,L-lactide in the presence of poly(ethylene glycol) (PEG), with number-average molecular weight (Mn) of 1500 and 2050 g/mol, using Sn(Oct)2 as a catalyst. The influences of the reaction time, the ratio of PEG and Poly(D,L-lactic acid) (PLA), and PEG types on structure and sol-gel phase transition of PLA-PEG-PLA triblock copolymers were investigated. Optimal polymerisation parameters were obtained, such as reaction time of 18 hours, a catalyst amount of 1.3%, and PEG/PLA ratio of 1/1.7, PEG (Mn=1500); the efficiency of the triblock synthesis was 42.3%. The properties of PLA-PEG-PLA copolymers were evaluated by analytical methods such as proton nuclear magnetic resonance H1NMR spectroscopy, gel permeation chromatography (GPC), and the sol-gel state transition at varying temperature. The results show that the triblock was successfully synthesised and its hydrogel had capability of the sol-gel state transition when the temperature changed. The PLA-PEG-PLA copolymer in aqueous solution is a thermo-sensitive hydrogel that can be used for drug and protein delivery systems or triblock denaturation applications for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.