To face contemporary problems, international engineers must be trained in advanced learning environments and with professional skills and knowledge. Sponsored by USAID (US Agency for International Development), the Build-IT (Building University-Industry Learning and Development through Innovation and Technology) program leverages the vast capabilities of the implementing partner from Arizona State University and plays a key role as an innovative pioneer in converging personalities from various fields. A well-educated engineer can contribute to the sustainable development of society. With the aim of building community-oriented education, an integrated strategy was proposed in which a problem-based learning method is investigated to apply technical knowledge. In accordance with this strategy, in our proposed method, students from Mechatronics Engineering first had to work together with other learners in the electronics, software, control automation, and mechanics fields, followed by the design of an open platform integrated multi-disciplinary approach. By collaborating with their peers in developing this hardware, students become better equipped with specialized knowledge. This process also allows students to feel confident in implementing their innovative thinking while still maintaining the core meaning of the instrument. One of the key benefits of this approach is that helping students overcome their problems concurrently enhances the engineer’s function in the community despite missing some specialized skill sets. Based on experimental works using this open framework, the present approach demonstrates that pupils in our program have sufficient ability to contribute to social achievements. Lastly, the feasible, low-cost, and visually educational instrument made by the participants showcases the value of such a multi-disciplinary approach.
Nowadays, global engineers need to be equipped with professional skills and knowledge to solve 21st century problems. The educational program, created in digital learning rooms of the Higher Engineering Education Alliance Program (HEEAP) program supported by Arizona State University, became a pioneer in teaching learners to work within the community. First, the combination of a novel instructional strategy and an integrated education in which project-based approach is employed to apply the technical knowledge. During this, students in mechatronics, computer science, and mechanics must collaborate with peers from industrial systems engineering. Second, in this paper, the design of an open structure connecting multi-disciplinary major is illustrated with a new teaching approach. It is proved to be better by combining specialized understandings of various types in a wide range of applications. From this basis support, participants could implement additional components quickly while keeping the cost low, making the products feasible and user-friendly. Last but not least, students are facilitated with a free library that helps to control simply despite lacking experience in robotics or automation. Several examples show that students are capable of developing things by themselves on open design. In brief, this platform might be an excellent tool to teach and visualize the practical scenario in a multi-disciplinary field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.