To survive, organisms need to precisely respond to various environmental factors, such as light and gravity. Among these, light is so important for most life on Earth that light-response systems have become extraordinarily developed during evolution, especially in multicellular animals. A combination of photoreceptors, nervous system components, and effectors allows these animals to respond to light stimuli. In most macroscopic animals, muscles function as effectors responding to light, and in some microscopic aquatic animals, cilia play a role. It is likely that the cilia-based response was the first to develop and that it has been substituted by the muscle-based response along with increases in body size. However, although the function of muscle appears prominent, it is poorly understood whether ciliary responses to light are present and/or functional, especially in deuterostomes, because it is possible that these responses are too subtle to be observed, unlike muscle responses. Here, we show that planktonic sea urchin larvae reverse their swimming direction due to the inhibitory effect of light on the cholinergic neuron signaling>forward swimming pathway. We found that strong photoirradiation of larvae that stay on the surface of seawater immediately drives the larvae away from the surface due to backward swimming. When Opsin2, which is expressed in mesenchymal cells in larval arms, is knocked down, the larvae do not show backward swimming under photoirradiation. Although Opsin2-expressing cells are not neuronal cells, immunohistochemical analysis revealed that they directly attach to cholinergic neurons, which are thought to regulate forward swimming. These data indicate that light, through Opsin2, inhibits the activity of cholinergic signaling, which normally promotes larval forward swimming, and that the light-dependent ciliary response is present in deuterostomes. These findings shed light on how light-responsive tissues/organelles have been conserved and diversified during evolution.
4′-Ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) and 4′-ethynyl-2′-deoxyadenosine (EdA) are nucleoside analogues which inhibit human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. EdAP, a cyclosaligenyl (cycloSal) phosphate derivative of EdA, inhibits the replication of the influenza A virus. The common structural feature of these compounds is the ethynyl group at the 4′-position. In this study, these nucleoside analogues were prepared by a common synthetic strategy starting from the known 1,2-di-O-acetyl-D-ribofuranose. Biological evaluation of EdAP revealed that this compound reduced hepatitis B virus (HBV) replication dose-dependently without cytotoxicity against host cells tested in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.