The COVID-19 pandemic has clearly shown the importance of developing advanced protective equipment, and new antiviral fabrics for the protection and prevention of life-threatening viral diseases are needed. In this study, selenium nanoparticles (SeNPs) were combined with polyester fabrics using printing technique to obtain multifunctional properties, including combined antiviral and antibacterial activities as well as coloring. The properties of the printed polyester fabrics with SeNPs were estimated, including tensile strength and color fastness. Characterization of the SeNPs was carried out using TEM and SEM. The results of the analysis showed good uniformity and stability of the particles with sizes range from 40–60 nm and 40–80 nm for SeNPs 25 mM and 50 mM, respectively, as well as uniform coating of the SeNPs on the fabric. In addition, the SeNPs—printed polyester fabric exhibited high disinfection activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an inhibition percentage of 87.5%. Moreover, a toxicity test of the resulting printed fabric revealed low cytotoxicity against the HFB4 cell line. In contrast, the treated fabric under study showed excellent killing potentiality against Gram-positive bacteria (Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhi, and Escherichia coli). This multifunctional fabric has high potential for use in protective clothing applications by providing passive and active protection pathways.
Because of its low critical temperature and pressure levels, supercritical carbon dioxide (scCO2) is the most widely used supercritical fluid in the supercritical fluid extraction (SFE) technique. Alizarin was extracted from madder roots (Rubia tinctorum) using scCO2 under different conditions of co-solvent ratio (0–50%), temperature (45–95 °C), pressure (150–250 bar), extraction time (15–120 min), and flow rate (5–9 mL/min). Based on alizarin recovery and minimization of environmental risk, the optimum conditions were determined. SFE was optimum at 90% CO2:10% methanol (Me), 65 °C, 250 bar, 45 min, and 9 mL/min. The alizarin recovery, and its content in R. tinctorum extract (RE) under the optimum conditions were 1.34 g/kg roots, and 6.42%, respectively. Using conventional dyeing methods, wool fabrics were dyed with RE at different concentrations (2–6%). Various types of mordants were also used in the dyeing process, including chemical and bio-mordants. Color and fastness properties of dyed wool fabrics were evaluated based on RE concentration and mordant type. A higher RE concentration and the use of mordants, specifically Punica granatum (P. granatum) peels, increased the color characteristics. RE and dyed fabrics exhibited good antibacterial activity against the tested bacterial strains, especially Pseudomonas aeruginosa and Escherichia coli.
It has become increasingly popular to replace chemically synthesized compounds with natural counterparts mostly found in natural sources, such as natural pigments. The conventional extraction processes for these compounds are limited by the toxicity and flammability of the solvents. To obtain pure extracts, it is always a longer process that requires several steps. Supercritical fluid extraction (SFE) is a cutting-edge green technology that is continuously increasing and expanding its fields of application, with benefits such as no waste produced, shorter extraction time, automation, and lower solvent consumption. The SFE of natural pigments has high potential in food, textiles, cosmetics, and pharmaceuticals; there are a number of other applications that can benefit from the SFE technique of natural pigments. The pigments that are extracted via SFE have a high potential for application and sustainability because of their biological and antimicrobial properties as well as low environmental risk. This review provides an update on the SFE technique, specifically as it pertains to the optimization of health-promoting pigments. This review focuses on antimicrobial pigments and the high efficiency of SFE in extracting pure antimicrobial pigments. In addition, the optimal conditions, biological activities, and possible applications of each category are explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.