The increase in obesity and lipid disorders in industrialized countries may be due to irregular eating patterns. Few studies have investigated the effects of nighttime snacking on energy metabolism. We examined the effects of nighttime snacking for 13 days on energy metabolism. Eleven healthy women (means ± SD; age: 23 ± 1 yr; body mass index: 20.6 ± 2.6 kg/m(2)) participated in this randomized crossover trial for a 13-day intervention period. Subjects consumed a specified snack (192.4 ± 18.3 kcal) either during the daytime (10:00) or the night time (23:00) for 13 days. On day 14, energy metabolism was measured in a respiratory chamber without snack consumption. An oral glucose tolerance test was performed on day 15. Relative to daytime snacking, nighttime snacking significantly decreased fat oxidation (daytime snacking: 52.0 ± 13.6 g/day; nighttime snacking: 45.8 ± 14.0 g/day; P = 0.02) and tended to increase the respiratory quotient (daytime snacking: 0.878 ± 0.022; nighttime snacking: 0.888 ± 0.021; P = 0.09). The frequency of snack intake and energy intake, body weight, and energy expenditure were not affected. Total and low-density lipoprotein (LDL) cholesterol significantly increased after nighttime snacking (152 ± 26 mg/dl and 161 ± 29 mg/dl; P = 0.03 and 76 ± 20 mg/dl and 83 ± 24 mg/dl; P = 0.01, respectively), but glucose and insulin levels after the glucose load were not affected. Nighttime snacking increased total and LDL cholesterol and reduced fat oxidation, suggesting that eating at night changes fat metabolism and increases the risk of obesity.
We investigated the efficacy of dietary consumption of Lactobacillus brevis KB290 (KB290) against influenza in humans by a preliminary intervention study on elementary schoolchildren, using a commercially available probiotic drink. Subjects were divided into Groups A and B, and an open-label, parallel-group trial was conducted in two 8-week periods at a 1-month interval in winter 2013/2014. Group A was provided with a bottle of the test drink containing KB290 (about 6 billion colony-forming units) every school day in the first period and had no treatment in the second period, and vice versa for Group B. Epidemic influenza was not observed during the first period and only two of 1783 subjects were diagnosed. In the second period, the incidence of influenza in Groups A (no treatment) and B (provided the test drink) was 23·9 and 15·7%, respectively, and the difference was statistically significant (P < 0·001). The reduction in the incidence of influenza by KB290 consumption was especially remarkable in unvaccinated individuals. This is believed to be the first study to show a probiotic food reducing the incidence of influenza in schoolchildren, although further studies are needed to confirm the effectiveness of the probiotic strain KB290.Significance and Impact of the StudyWe demonstrated a reduction in the incidence of influenza in 1089 schoolchildren by continual intake of a probiotic drink containing Lactobacillus brevis KB290 (KB290), isolated from a traditional Japanese pickle ‘Suguki’. The effect was especially evident in subjects not inoculated with influenza vaccine. This is believed to be the first report to show reduced incidence of influenza in schoolchildren taking a probiotic food. Further studies are needed to confirm the effectiveness of the probiotic strain KB290, which may be useful in the development of potential anti-influenza agents derived from common foods.
This cross-sectional study of 2231 Japanese adults described food choice values and food literacy in relation to sex, age, and body mass index. We assessed eight food choice values (accessibility, convenience, health/weight control, tradition, sensory appeal, organic, comfort, and safety, using a 25-item scale), as well as food literacy, which was characterized by nutrition knowledge (using a validated 143-item questionnaire), cooking and food skills (using 14- and 19-item scales, respectively), and eight eating behaviors (hunger, food responsiveness, emotional overeating, enjoyment of food, satiety responsiveness, emotional undereating, food fussiness, and slowness in eating, using the 35-item Adult Eating Behavior Questionnaire). Females had higher means of all the variables than males, except for food fussiness. Compared to participants aged 19–39 and/or 40–59 years, those aged 60–80 years had low means of some food choice values (accessibility, convenience, sensory appeal, and comfort), nutrition knowledge, and all the food approach behaviors (hunger, food responsiveness, emotional overeating, and enjoyment of food) and high means of other food choice values (tradition, organic, and safety) and slowness in eating. Age was inversely associated with cooking and food skills in males, whereas the opposite was observed in females. The associations with body mass index were generally weak. These findings serve as both a reference and an indication for future research.
Nuclear reprogramming of differentiated cells can be induced by oocyte factors. Despite numerous attempts, these factors and mechanisms responsible for successful reprogramming remain elusive. Here, we identify one such factor, necessary for the development of nuclear transfer embryos, using porcine oocyte extracts in which some reprogramming events are recapitulated. After incubating somatic nuclei in oocyte extracts from the metaphase II stage, the oocyte proteins that were specifically and abundantly incorporated into the nuclei were identified by mass spectrometry. Among 25 identified proteins, we especially focused on a multifunctional protein, DJ-1. DJ-1 is present at a high concentration in oocytes from the germinal vesicle stage until embryos at the fourcell stage. Inhibition of DJ-1 function compromises the development of nuclear transfer embryos but not that of fertilized embryos. Microarray analysis of nuclear transfer embryos in which DJ-1 function is inhibited shows perturbed expression of P53 pathway components. In addition, embryonic arrest of nuclear transfer embryos injected with anti-DJ-1 antibody is rescued by P53 inhibition. We conclude that DJ-1 is an oocyte factor that is required for development of nuclear transfer embryos. This study presents a means for identifying natural reprogramming factors in mammalian oocytes and a unique insight into the mechanisms underlying reprogramming by nuclear transfer.oocyte extract and proteomics | reprogramming in mammalian oocytes E mbryonic cells differentiate into specific types of cells as development progresses. Once differentiated, the reversion of a differentiated cell state to an original undifferentiated state is strictly inhibited in normal development. However, it has been experimentally shown that differentiated nuclei can be returned to an undifferentiated embryonic state after nuclear transfer (NT) to enucleated eggs or oocytes (1, 2). Such experiments provide an opportunity to reprogram somatic cells as a means to prepare undifferentiated cells, which may be differentiated into any kinds of cells for cell-replacement therapy. Recently, nuclear reprogramming technology has been expanded by the production of induced pluripotent stem (iPS) cells (3). iPS cells can be obtained by overexpressing specific sets of transcription factors such as Oct4, Sox2, Klf4, and c-myc in cultured cells. The processes leading to establishment of iPS cell lines are being carefully examined and we are begining to understand how somatic cells acquire pluripotency by this method (4-6). The mechanisms leading to pluripotency may be different between iPS cells and NT embryos because somatic nuclei transferred into unfertilized metaphase II (MII) oocytes must undergo early embryonic development before the inner cell mass (ICM) can give rise to pluripotent embryonic stem (ES) cells. In addition, the molecules and mechanisms that induce somatic cell reprogramming are expected to be different between iPS cells and NT embryos (7,8). A recent study has shown that nuclear t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.