Activating transcription factor 4 (ATF4) is well known for its role in the endoplasmic reticulum (ER) stress response. ATF4 also transcriptionally induces multiple effectors that determine cell fate depending on cellular context. In addition, ATF4 can communicate both pro-apoptotic and pro-survival signals. How ATF4 mediates its prosurvival roles, however, requires further investigation. Here, we report that the CDK inhibitor p21 is a novel target gene of ATF4. We identified two ATF4-responsive elements, one of which directly binds ATF4, within the first intron of the p21 gene. Importantly, overexpression of p21 enhances cell survival following ER stress induction, while p21 knockdown increases cell death. These results suggest that p21 induction plays a vital role in the cellular response to ER stress and indicate that p21 is a prosurvival effector of ATF4.
The pars tuberalis (PT) is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD), such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU) that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2) mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.
The p53 tumor suppressor plays critical roles in cell cycle regulation and apoptotic cell death in response to various cellular stresses, thereby preventing cancer development. Therefore, the activation of p53 through small molecules is an attractive therapeutic strategy for the treatment of cancers retaining wild-type p53. We used a library of 700 Myanmar wild plant extracts to identify small molecules that induce p53 transcriptional activity. A cell-based screening method with a p53-responsive luciferase-reporter assay system revealed that an ethanol extract of Oroxylum indicum bark increased p53 transcriptional activity. Chrysin was isolated and identified as the active ingredient in the O. indicum bark extract. A treatment with chrysin increased p53 protein expression and the p53-mediated expression of downstream target genes, and decreased cell viability in MCF7 cells, but not in p53-knockdown MCF7 cells. We also found that chrysin activated the ATM-Chk2 pathway in the absence of DNA damage. Hence, the inactivation of the ATM-Chk2 pathway suppressed p53 activation induced by chrysin. These results suggest the potential of chrysin as an anti-cancer drug through the activation of p53 without DNA damage.
Lysine-specific demethylase 1 (LSD1/KDM1A) is a histone demethylase and specifically catalyzes the demethylation of mono-and di-methylated histone H3 lysine 4 (H3K4). The LSD1-mediated demethylation of H3K4 promotes the assembly of the c-Myc-induced transcription initiation complex. Although LSD1 and c-Myc are both strongly expressed in human cancers, the mechanisms by which their activities are coordinated remain unclear. We herein demonstrated that LSD1 is a direct target gene of c-Myc. The knockdown of c-Myc decreased the expression of LSD1 in several cancer cell lines. We identified two non-canonical Eboxes in the proximal promoter region of the LSD1 gene. A chromatin immunoprecipitation assay showed that c-Myc bound to these E-boxes in the LSD1 promoter. Importantly, LSD1 mRNA expression correlated with c-Myc expression in human acute myeloid leukemia (AML), glioblastoma, stomach adenocarcinoma, and prostate adenocarcinoma. The present results suggest that LSD1 is induced by c-Myc and forms a positive feedback mechanism in transcription reactions by c-Myc.
The tumor suppressor p53 is a transcription factor that regulates the expression of dozens of target genes and diverse physiological processes. To precisely regulate the p53 network, p53 undergoes various post-translational modifications and alters the selectivity of target genes. Acetylation plays an essential role in cell fate determination through the activation of p53. Although the acetylation of p53 has been examined, the underlying regulatory mechanisms remain unclear and, thus, have attracted the interest of researchers. We herein discuss the role of acetylation in the p53 pathway, with a focus on p53 acetyltransferases and deacetylases. We also review recent findings on the regulators of these enzymes to understand the mode of p53 acetylation from a broader perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.